Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Полная автоматизация устройства управления электронасосом. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Блоки питания

Комментарии к статье Комментарии к статье

Описываемое устройство служит для автоматического управления любых электронасосов, в том числе центробежных скважинных насосов водоподъема с погруженными электродвигателями мощностью 1...11 кВт и контроля уровня воды в наполняемом резервуаре и скважине.

Устройство представляет собой дополненный вариант устройства "Автоматическое управление электронасосом", описанное А. Калинским. По сравнению с ним предложенное устройство позволяет автоматически реагировать не только на достижение водой выше допустимого уровня в наполняемом резервуаре, но и на понижение воды ниже допустимого уровня в скважине. Это очень поможет при расположении электронасоса в скважине или колодце с малым уровнем воды или при перекачке воды из одного резервуара в другой при поливе из резервуара. Кроме этого, предусмотрен контроль уровней воды в скважине и резервуаре, а также защита электродвигателя насоса от пропадания фазы 3-фазных электродвигателей.

Принципиальная схема устройства изображена на рис.1.

Полная автоматизация устройства управления электронасосом
(нажмите для увеличения)

Устройство содержит элементы тепловой защиты электродвигателя насоса: автоматический трехполюсный выключатель SF1; нагревательные элементы 1РТ, 2РТ и размыкающие контакты К1.1РТ, К1.2РТ теплового реле; электромагнитный пускатель К1, включающий насос; блок питания, преобразующий напряжение " 220 В (между фазным проводом С и нулевым проводами N) в постоянное 9 В; датчики воды, управляющие работой устройства в автоматическом режиме и содержащие триггер Шмитта на элементах DD3.1 - DD3.2, RS-триггер на элементах DD3.3 - DD3.4, исполнительное устройство на транзисторах VТ3 VТ4 и реле К2; датчики (электроды) нижнего уровня воды (ДНУ) и верхнего (ДВУ). Конденсаторы С4 - С7 и триггер Шмитта предназначены для повышения помехоустойчивости устройства.

В устройстве применен магнитный пускатель с катушкой на напряжение ~ 380 В, т.е. при пропадании фазы А или В насос выключается. При пропадании фазы С не будет напряжения 9 В, следовательно, отпустит реле К2, и своими контактами К1.1 и К1.2 разорвет цепь питания катушки пускателя, и насос выключится.

При включенном выключателе SF1 и нейтральном положении переключателя SA1 электронасос выключен (реле К2 обесточено). При необходимости работы в ручном режиме переключатель SA1 устанавливают в положение "Ручн." (в верхнее по схеме). При этом срабатывает реле К2 и своими контактами К1.1 и К1.2 включает магнитный пускатель.

Для перевода в автоматический режим работы переключатель SA1 устанавливают в нижнее по схеме положение, при этом включается в работу блок питания, который подает + 9 В на датчики уровня воды.

1. Если вода в наполняемом резервуаре находится ниже ДНУ, то величина сопротивления между ДНУ, ДВУ и корпусом резервуара большая, и на входах 1 DD2.1 и 8 DD2.2 присутствует напряжение лог. "1".

2. Если вода в скважине находится выше ДВУ, сопротивление между ДВУ, ДНУ и землей составляет 1 ...10 кОм (в зависимости от электропроводности воды, которая, в свою очередь, зависит от содержания в воде солей и различных примесей). На входах 8 и 9 DD1.3 и 12 и 13DD1.4 присутствует напряжение лог. "0".

3. При наличии условий п. 1 и 2 на вход S RS-триггера (вывод 13 DD3.3) приходит уровень лог."0", на вход R (вывод 8 DD3.4) - уровень лог."1". Триггер устанавливается в единичное состояние, на выходе 1 DD3.3 устанавливается лог."1", открываются транзисторы VT3, VT4, срабатывает реле К2, которое своими контактами К2.1 и К2.2 замыкает цепь питания катушки магнитного пускателя К1, который включает в работу электронасос.

4. Насос начинает качать воду из скважины в резервуар. В процессе заполнения вода достигает ДНУ резервуара, или уровень воды в скважине устанавливается ниже ДВУ, или оба эти условия выполняются одновременно: на выходе 4 DD2.3 появляется лог."0", а на входе S (вывод 13 DD3.3) RS-триггера лог."1", но состояние триггера не изменяется, насос продолжает качать воду.

5. Если вода в резервуаре достигает ДВУ или в скважине опустится ниже ДНУ, на вход R (вывод 8 DD3.4) RS-триггера поступает лог."0", триггер устанавливается в нулевое состояние, на выходе 11 DD3.3 появляется уровень лог."0", который закрывает транзисторы VT3, VT4. Отпускает реле К2, обесточивается катушка пускателя К1, насос отключается от сети.

6. По мере использования воды из резервуара вода устанавливается ниже ДВУ, или в скважине поднимется выше ДНУ, или выполняются оба эти условия: RS-триггер не изменяет своего состояния, и насос остается выключенным.

7. Только при условии, что вода в резервуаре достигает уровня ниже ДНУ и в скважине - выше ДВУ - насос автоматически включается в работу (RSтриггер устанавливается в единичное состояние лог."0" на входе S (вывод 13 DD3.3).

Если в процессе работы электронасоса ток через нагревательные элементы 1РТ,2РТ протекает выше допустимого, срабатывает тепловое реле и контактами К1.1РТ, К1.2РТ обесточивается пускатель К1. При коротких замыканиях в обмотках электродвигателя насоса срабатывает автоматический выключатель SF1, отключая электронасос от сети.

Конструкция и детали. В качестве электронасоса применен погружной электродвигатель водоподъема ПЭДВ-8 мощностью 8 кВт, коммутируемый контактами электромагнитного пускателя с катушкой на 380 В, в корпусе которого размещено тепловое реле ТРН-25У3.

Нагревательные элементы этого реле включаются в два фазных провода, питающих электронасос, а размыкающие контакты - последовательно с обмоткой пускателя.

Автоматический выключатель типа 1-АП50-3МУ3. Вместо него можно применить А3124 на ток срабатывания не менее 25 А.

Для подключения электродвигателя следует применять провод или кабель с сечением жил не менее 2,5 мм2. Переключатель SA1 типа П2Т-1. Трансформатор Т1 мощностью не менее 5 Вт с напряжением на вторичной обмотке 13...15 В. Диоды VD1-VD4 типа КЦ405 с любым буквенным индексом. Конденсаторы С1, С4 - С7 типа К73-17, С2, С3 типа К50-35. Резисторы типа ОМПТ или МПТ. Микросхемы серии К176 можно заменить на микросхемы серии К561. Транзисторы VТ1- VТ4 с любым буквенным индексом. Вместо КТ315Б (VT1, VT3) можно применить КТ503, КТ3102, вместо КТ805БМ (VТ2, VТ4) - КТ819 с любым буквенным индексом. Реле К2-РЭС9 (паспорт РС4.5241203, РС4.524.214, РС.524.216, РС4.524.219, РС4.524.229, РС4.524.232). Печатная плата блока управления показана на рис.2.

Внимание! На печатной плате присутствует напряжение ~ 220 В. При наладке и ремонте отпаять провода "К1.2РТ" и "фаза В".

После наладки или ремонта печатную плату покрыть цапонлаком. На передней крышке корпуса устанавливают переключатель SA1, предохранитель FU1 и светодиоды HL1 - HL4, свечение которых указывает на достижение водой уровня соответствующего датчика. Корпус устройства соединяют с общим проводом блока питания и нулевым проводом сети. Нулевой провод заземляют.

Корпус резервуара тоже заземляют. Если резервуар неметаллический, то на одной планке с датчиками уровней устанавливают и заземляют третий электрод. По длине он должен быть больше датчика нижнего уровня. Вода в скважине или колодце надежно заземлена, и никаких мер по заземлению принимать не надо.

В качестве датчиков уровней можно использовать конструкции из металлов, устойчивых к коррозии: оцинкованная, нержавающая сталь, алюминий. Нельзя использовать металлы, которые оказывают вредное воздействие на воду, например, медь (это относится и к подводящим проводам).

Настройка устройства. Не запитывая блок управления, подобрать резистором R1 ток через стабилитрон VD5 в пределах 5...10 мА. Резистором R2 выставить на эмиттере VT2 напряжение +9 В, подать его на устройство.

Настройка устройства заключается в подборе сопротивлений резисторов R4 - R7. Для настройки необходимо: подать питание на датчики уровней, параллельно конденсатору С4 подпаять резистор с сопротивлением 3...10 кОм (эквивалент воды), изменяя сопротивление R4, добиться, чтобы падение напряжения на резисторе эквивалента воды равнялось 0,5 ...0,7 В, отсоединить резистор эквивалента воды - напряжение на выводах 1,2 DD1.1 должно быть около 9 В. Аналогично подобрать резисторы R5 - R7.

В процессе эксплуатации устройства рекомендуется два раза в год проводить профилактический осмотр и чистку датчиков уровня.

Автор: А.Н.Маньковский

Смотрите другие статьи раздела Блоки питания.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Растения сигнализируют об опасности вулканической активности 17.06.2025

Извержения вулканов - одни из самых разрушительных природных явлений, и своевременное их предсказание является важной задачей для защиты жизни и имущества людей. Современные технологии позволяют отслеживать сейсмическую активность, тепловые аномалии и газовые выбросы, однако ученые из разных стран продолжают искать новые, более ранние признаки приближающейся опасности. Недавнее исследование команды под руководством вулканолога Николь Гвинн продемонстрировало необычный способ раннего обнаружения вулканической активности с помощью изменений в растительности вокруг вулкана Этна - одного из самых активных вулканов Европы. В ходе двухлетних наблюдений ученые выявили 16 случаев, когда увеличение содержания углекислого газа (CO2) в воздухе или почве совпадало с ростом показателя NDVI - нормализованного индекса растительности, отражающего интенсивность фотосинтеза и здоровье зеленых насаждений. Этот индекс широко используется для оценки густоты и жизнеспособности растительного покрова на сп ...>>

Магнит без использования полезных ископаемых 17.06.2025

Технологии все больше зависят от редких и дорогих материалов, добыча которых сопряжена с экологическими и геополитическими рисками. В связи с этим поиск альтернативных решений становится одной из важнейших задач науки и промышленности. Недавно американские ученые во главе с исследователем китайского происхождения Цзянь-Пин Ванг разработали магнит, изготовленный исключительно из железа и азота, который не содержит традиционных редкоземельных элементов. Это открытие может кардинально изменить подход к производству магнитных материалов и значительно снизить зависимость от нестабильных международных поставок. В отличие от широко используемых сегодня магнитов, содержащих редкие полезные ископаемые, такие как самарий и диспрозий, новый магнит отличается более простой и экологичной составной частью. По словам ученых, магнит, созданный из железа и азота, обладает силой магнитного поля, которая превосходит многие известные материалы на рынке. Это делает его перспективной заменой для постоянн ...>>

Скука полезна творческим людям 16.06.2025

Когда информационный поток непрерывно заполняет наше сознание, умение сделать паузу становится особенно важным. Именно в моменты кажущейся скуки мозг получает возможность перезагрузиться и активировать скрытые ресурсы, стимулирующие творческое мышление и саморефлексию. Ученые из Университета Саншайн-Кост в Австралии провели исследование, которое подтверждает, что короткие периоды скуки могут быть полезны для творческих людей и не только. Скука возникает в тот момент, когда способность человека удерживать внимание начинает снижаться, и активируется так называемая сеть пассивного режима мозга. Эта система отвечает за внутренние мысли и саморефлексию, в то время как активность исполнительной сети, которая обычно помогает сосредоточиться, заметно снижается. Таким образом, скука становится не просто неприятным ощущением, а своего рода переключателем, дающим мозгу возможность отдохнуть от постоянной концентрации. Современный ритм жизни сопровождается постоянной стимуляцией симпатическо ...>>

Случайная новость из Архива

Голос выдаст депрессию 23.07.2019

Исследователи в области компьютерных наук из Альбертского университета (Канада) научили искусственный интеллект более точно определять подавленное состояние человека по тому, как звучит его голос. Ученые планируют разработать на основе этой технологии мобильное приложение, которое поможет отслеживать настроение в режиме реального времени, говорится на сайте университета.

Работа канадских ученых основана на прошлых исследованиях, которые показывают, что тембр нашего голоса содержит информацию о нашем настроении. Используя стандартные наборы эталонных данных, исследователи разработали методологию, которая объединяет несколько алгоритмов машинного обучения для более точного распознавания депрессии с использованием акустических сигналов.

"Реалистичный сценарий состоит в том, чтобы люди использовали приложение, которое будет собирать образцы звучания голоса, когда они говорят естественным образом. Приложение на телефоне пользователя будет распознавать и отслеживать показатели настроения (например, состояние депрессии) с течением времени", - отмечает один из авторов разработки, профессор Элени Струлия.

Такой "шагометр для настроения" сможет помочь людям со временем задуматься о своем собственном настроении и передавать точные данные об изменении эмоционального состояния пациента его врачу.

Другие интересные новости:

▪ Cолнечная панель-сэндвич для прямой передачи энергии из космоса на земные приемники

▪ 3D в кармане - пока только дорогие предложения

▪ Защищенный ноутбук Gigabyte U4

▪ Самый маленький микрофон в мире

▪ Новый Кубик Рубика сам научит себя собирать

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Большая энциклопедия для детей и взрослых. Подборка статей

▪ статья Жив Курилка. Крылатое выражение

▪ статья Перемещаются ли ураганы в определенных направлениях? Подробный ответ

▪ статья Масштаб карты. Советы туристу

▪ статья Программирование последовательных микросхем памяти. Энциклопедия радиоэлектроники и электротехники

▪ статья Двуполярное питание с однополярного источника. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025