Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Индикаторы степени разряда аккумуляторных батарей. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Зарядные устройства, аккумуляторы, гальванические элементы

Комментарии к статье Комментарии к статье

Контроль состояния аккумуляторных батарей - забота как владельцев автомобилей, так и радиолюбителей, применяющих их в переносной аппаратуре или в составе резервных источников питания. Несоблюдение правил эксплуатации аккумуляторов (перезаряд, глубокий разряд) сокращает срок службы и ухудшает характеристики этих изделий.

В радиолюбительской литературе описано довольно много устройств, предназначенных для контроля напряжения батарей. Для аккумуляторов малой емкости главное требование - малый потребляемый ток. Такому требованию отвечает, например, однопороговый сигнализатор [1], потребляющий в ждущем режиме всего 2 мкА. Для автомобильных аккумуляторов вполне подходят "прожорливые", но с более широкими возможностями двухпороговые индикаторы, например предложенные в [2, 3].

Сигнализация состояния батареи в них осуществляется по-разному: в первом устройстве при понижении напряжения ниже порога включается и постоянно светится единственный светодиод; во втором непрерывно светится единственная лампа накаливания при выходе напряжения за верхний (или нижний) предел; в третьем используют два светодиода, и состояние батареи определяют по яркости их свечения (половинной или нормальной).

Бесспорно, что такие варианты сигнализации не совсем удобны - постоянно светящийся индикатор слабо привлекает внимание (тем более что на приборной доске автомобиля светящихся индикаторов более чем достаточно), а различить еще и степень яркости свечения светодиодов весьма затруднительно, особенно при дневном свете.

Принципиальным отличием представленных в этой статье конструкций является то, что нестандартные режимы индицируются мигающими индикаторами, которые с гораздо большей вероятностью способны привлекать внимание. Это особенно важно, если они не постоянно перед глазами (как приборный щиток в автомобиле), а расположены в блоке резервного питания, который гораздо реже контролируют визуально - проблемы с выходом напряжения батареи из "нормы" довольно редки. Однако необходимо быть уверенным, что батарея заряжена или подзаряжается, а также знать степень ее разрядки.

На рис.1 изображена принципиальная схема индикатора для контроля напряжения в пределах 7-9 В аккумуляторной батареи типа 7Д-0,115, которые часто используют в переносной аппаратуре. За основу взята схема, опубликованная в [1], где источник опорного напряжения и пороговое устройство выполнены на универсальной логической микросхеме К176ЛП1, причем отмеченный авторами этой публикации недостаток - заметная зависимость порога от окружающей температуры (снижается на 0,25 В с ростом температуры на 10°С) можно считать вполне приемлемой платой за малое энергопотребление. Этот датчик, кроме изменения параметров нескольких резисторов, дополнен генератором импульсов на КМОП-инверторах К176ЛА7.

Индикаторы степени разряда аккумуляторных батарей
(нажмите для увеличения)

Напряжение контролируемого аккумулятора с делителя на резисторах R1-R3 подается на вход компаратора (вывод 3 DD1). Если напряжение на нем окажется выше установленного резистором R2 порога, на его выходе (вывод 12) - лог."0", который удерживает генератор импульсов в заторможенном состоянии. При этом на выводе 3 DD1 - лог."1", а инвертор DD2.3 обеспечивает выключение светодиода. В этом состоянии энергопотребление не превышает нескольких микроампер, что позволяет подключать индикатор к аккумулятору, минуя выключатель питания, и контролировать его состояние постоянно.

Если напряжение оказывается ниже порога, то на выходе компаратора появляется лог.1", запускающая генератор на элементах DD2.1-DD2.2. Светодиод VD1, являющийся нагрузкой инвертора DD2.3, начинает вспыхивать с частотой около 1 Гц, и устройство потребляет хотя и меньший, чем в прототипе [1], но все-таки значительный ток (единицы миллиампер).

Соединение светодиода VD1 непосредственно с выходом инвертора без балластного резистора возможно, поскольку логический элемент действует как источник тока - выходной ток ограничивается величинами начальных токов КМОП-структур и согласуется с интервалом рабочих токов большинства светодиодов [4].

На рис.2 показана печатная плата устройства (вид со стороны проводников).

Индикаторы степени разряда аккумуляторных батарей

Предусмотрена возможность составления резисторов R1 и R4 из нескольких последовательно соединенных меньшего сопротивления. Неиспользуемые входы лишнего элемента 2И-НЕ микросхемы DD2 заземлены.

Вторая конструкция разработана для функционирования в составе аварийного источника питания со стационарной герметичной аккумуляторной батареей FIAMM-GS 12 В емкостью 7,2 А.ч. В отличие от автомобильных батарей, в таком источнике питания батарея подзаряжается от сетевого зарядного устройства постоянно, через ограничитель тока и напряжения. При правильном конструировании перезаряд практически исключен и индицировать повышенное напряжение явно излишне.

Но крайне необходим контроль степени разряда батареи после исчезновения сетевого напряжения и переключения потребителей на резервный источник, чтобы предотвратить глубокую разрядку и вовремя отключить эту нагрузку. Желательно также, чтобы индикатор разряда показывал несколько уровней - близкий к номинальному заряд (при подзарядке аккумуляторной батареи от сети), а также разряд, например, на уровне 50 и 75%.

Принципиальная схема индикатора, который удовлетворяет таким требованиям, показана на рис.3. Он имеет уже двухпороговый компаратор (за основу взята схема включения двух операционных усилителей [2]), который в сочетании с генератором импульсов и двумя светодиодными индикаторами способен показывать 3 степени разрядки батареи, причем две из них для большей заметности - миганием, при разрядке на половину емкости.

Индикаторы степени разряда аккумуляторных батарей
(нажмите для увеличения)

Пороги срабатывания компараторов устанавливают резисторами делителя напряжения R1 (подстройка), R2-R4. Указанные в схеме номиналы соответствуют двум порогам: U1=12,1 В (DA1.1) и U2=12,8 В (DA1.2) при опорном напряжении Uоп = 3,3 В, полученным от стабилитрона типа КС133А зарядного устройства. При другом применении следует предусмотреть для него место на печатной плате вместе с резистором 1-1,2 кОм.

Один из компараторов (ОУ DA1.2) управляет генератором импульсов, а второй (ОУ DA1.1) - цветом включенного светодиода. Логику работы индикатора поможет иллюстрировать табл.1

Таблица 1
Индикаторы степени разряда аккумуляторных батарей
(нажмите для увеличения)

Примечание: М - меандр скважностью 2 и периодом ≥1 с.

Если напряжение батареи превышает U2, на выходе компаратора DA1.2 (контрольная точка D) будет лог."0", который удерживает генератор импульсов, собранный на элементах DD1.2, DD1.3, R5, C2 аналогично предыдущей схеме, в ждущем режиме. В контрольной точке G, куда подключены катоды обоих светодиодов, присутствует лог."0". Цвет включенного в данный момент времени светодиода определяется напряжением на выходе компаратора DA1.1 (контрольная точка C) - при лог."0" погаснет зеленый VD4, но инвертор DD1.1 (контрольная точка E) включит красный VD3.

Когда Ucc ниже порога U1, на выходе DA1.2 в точке D появляется лог."1", которая запускает генератор импульсов, и в точке G появляется меандр: при "0" светодиоды горят, а при "1" выключены. Диоды VD1 и VD2 блокируют появление на светодиодах напряжения обратной полярности.

Несмотря на то что светодиоды могли бы быть подключенными к выходам логических элементов DD1 непосредственно, как в предыдущей конструкции, в данном устройстве все-таки установлен балластный резистор R6. Это сделано потому, что здесь напряжение питания индикатора выше, и зеленый светодиод в дежурном режиме светится постоянно. Чтобы излишне не разогревать корпус и не превышать рекомендуемый в [4] предел мощности для микросхемы DD1, ток ограничен на уровне 10 мА - яркость импортного двухцветного светодиода вполне достаточна, чтобы его включение было заметным даже при дневном свете.

Таким образом, постоянно светящийся зеленый индикатор показывает нормальное состояние и достаточный заряд аккумулятора; мигание зеленого указывает на скорое исчерпание емкости; мигание красного - на необходимость через короткое время отключить резервируемые устройства.

Потребляемый ток индикатора около 25-30 мА, что вполне приемлемо для стационарной аккумуляторной батареи такой емкости.

На рис.4 показана печатная плата со стороны проводников.

Индикаторы степени разряда аккумуляторных батарей

В обоих устройствах можно использовать следующие детали: резисторы - любые подходящие по размеру; конденсаторы: C1 - малогабаритные электролитические на напряжение не менее 16 В (их емкость некритична), C2 - керамические малогабаритные импортные; светодиоды типа АЛ307 или любые другие, которые повторяющий конструкцию сочтет подходящими по цвету и размеру.

В первом индикаторе микросхему DD2 можно заменить на К561ЛА7, но DD1 аналогов в других сериях не имеет. Во втором индикаторе DA1 можно заменить (с коррекцией печатной платы) любой парой одинарных или сдвоенным ОУ с напряжением питания 15 В, а диоды VD1, VD2 - на КД521, КД522 с любым индексом или импортным аналогом 1N4148.

Наладка обоих устройств сводится к подбору резисторов в делителях и уточнению порогов подстроечными резисторами. Описанные конструкции эксплуатируются без замечаний более 2 лет.

Литература:

  1. Ходаковский Е., Андрущенко В. Сигнализатор разрядки батареи аккумуляторов//Радио.-1986.-№11.С.62.
  2. Маргулис А. Автомобильный сигнализатор напряжения//Радио.-1987.№ 2.-С.54-55.
  3. Серебровский О. Индикатор напряжения аккумуляторной батареи автомобиля//Радио.-1991.- №12.С.64.
  4. 4. Данюк Д., Пилько Г. Применение серии 176 со светодиодами//Радiоаматор.-1994.- №2.-С.24.

Авторы: А.И. Хоменко, В.П. Чигринский

Смотрите другие статьи раздела Зарядные устройства, аккумуляторы, гальванические элементы.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Токсичность интернета преувеличена 07.01.2026

Социальные сети нередко воспринимаются как арена постоянной агрессии, оскорблений и распространения фейковой информации. Новое исследование Стэнфордского университета показывает, что реальность значительно отличается от популярного представления: интернет гораздо менее токсичен, чем многие пользователи считают. Ученые опросили более тысячи американцев, попросив их оценить долю пользователей соцсетей, которые ведут себя агрессивно или распространяют ненависть. Оказалось, что впечатления людей сильно преувеличивают масштабы проблемы. Например, респонденты считали, что почти половина пользователей Reddit хотя бы раз оставляла оскорбительные комментарии, тогда как фактические данные платформы показывают, что таких людей не более 3%. Аналогичная ситуация наблюдается с дезинформацией. Опрос показал, что большинство участников считали почти половину аудитории Facebook распространителями фейковых новостей, однако статистика говорит об обратном: фактическая доля таких пользователей состав ...>>

Процессоры Ryzen AI 400 07.01.2026

Современные вычисления все больше ориентируются на интеграцию искусственного интеллекта и высокую производительность в компактных устройствах, таких как ноутбуки и мини-ПК. Новая линейка процессоров AMD Ryzen AI 400 демонстрирует, как разработчики объединяют мощные центральные ядра, графику и нейросетевые ускорители в одном чипе, чтобы удовлетворять растущие потребности пользователей в играх, контенте и ИИ-приложениях. AMD представила процессоры серии Gorgon Point, которые включают до 12 ядер Zen 5 и до 24 потоков вычислений. Чипы поддерживают интегрированную графику RDNA 3.5, обеспечивают максимальную тактовую частоту до 5,2 ГГц и имеют энергопотребление от 15 Вт до 54 Вт. Особое внимание уделено NPU, способному обрабатывать до 60 триллионов операций в секунду (TOPS), что делает эти процессоры эффективными для задач с искусственным интеллектом. Конструкция Ryzen AI 400 сочетает ядра Zen 5 и Zen 5c, обеспечивая высокую гибкость и производительность. Несмотря на то, что архитектур ...>>

Женщины лучше распознают признаки болезни по лицу 06.01.2026

Способность распознавать, что кто-то нездоров, часто проявляется интуитивно: бледная кожа, опущенные веки, уставшее выражение лица могут сигнализировать о недомогании. Новое исследование международной группы ученых показало, что женщины в среднем точнее мужчин улавливают такие тонкие невербальные признаки болезни, что может иметь эволюционные и социальные объяснения. В отличие от предыдущих работ, где использовались отредактированные фотографии или имитация больных лиц, ученые решили проверить, насколько люди способны распознавать естественные признаки недомогания. Такой подход позволил оценить реальную чувствительность к изменениям в лицах, возникающим при болезни. В исследовании приняли участие 280 студентов, поровну мужчин и женщин. Участникам предложили оценить 24 фотографии, на которых изображены люди как в здоровом состоянии, так и во время болезни. Это дало возможность сравнить восприятие естественных признаков недомогания в реальных лицах. Для анализа состояния каждого ...>>

Случайная новость из Архива

Выращены кровеносные сосуды 20.01.2019

Ученым из Университета Британской Колумбии, которые занимаются исследованием стволовых клеток, удалось вырастить в лабораторных условиях кровеносные сосуды. Данное достижение может стать гигантским скачком в борьбе с такими заболеваниями, как болезнь Альцгеймера, рак и диабет.

У людей с диагнозом "диабет" часто нарушается процесс циркуляции крови в организме. Это может привести к сердечным приступам, инсультам и другим болезням, связанным с сердечно-сосудистой системой. Долгое время ученые занимались созданием органоидов (искусственно выращенных "фрагментов" человеческого тела, которые используются для медицинских экспериментов), чтобы на них изучать развитие каждой болезни. Это обусловлено тем, что сосудистая система животных не позволяет в полной мере оценить все факторы развития болезни.

Полноценные органоиды кровеносных сосудов человека были получены впервые. Сосудистую систему исследователи из Университета Британской Колумбии вырастили на основе стволовых клеток. Она имитирует структуру и функции настоящих сосудов. Впоследствии выращенные в лаборатории кровеносные сосуды ученые переместили в чашку Петри (прозрачный лабораторный сосуд, применяется в микробиологии и химии), что имитировала "диабетическую среду". Исследователи обнаружили, что на сосудах появились утолщения, что напоминают деформацию при реальном диабете. После ряда тестов было обнаружено вещество, которое поможет предотвратить это утолщение: им оказался ингибитор фермента y-секретазы.

Ученые пересадили выращенные кровеносные сосуды живым мышам. Сосуды прижились в организме грызунов, став единым целым с их кровеносной системой.

Другие интересные новости:

▪ Мобильный телефон с двумя фотокамерами

▪ Ионный мини-двигатель протестирован на орбите

▪ Электромобиль зарядится через антенну

▪ Гибкое и эластичное стекло

▪ Audi, GM, Honda и Hyundai переходят на Android

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Большая энциклопедия для детей и взрослых. Подборка статей

▪ статья Подводная лодка класса ЕЛ-500. Советы моделисту

▪ статья Сколько глаз у рыбы четырехглазки? Подробный ответ

▪ статья Финансовый менеджер. Должностная инструкция

▪ статья Усилитель низкой частоты на микросхеме LA4550. Энциклопедия радиоэлектроники и электротехники

▪ статья Электролизерная сварка. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2026