Menu English Ukrainian Russian Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Термокомпенсированный регулятор напряжения. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Регуляторы тока, напряжения, мощности

Комментарии к статье Комментарии к статье

Один из важных элементов электрооборудования автомобиля - аккумуляторная батарея (далее аккумулятор). В отличие от остального электрооборудования аккумулятор имеет ограниченный срок службы, и поэтому (учитывая его немалую стоимость) увеличение его ресурса до максимального значения является для автолюбителей актуальной задачей.

Поскольку аккумулятор почти все время установлен на автомобиле, то для решения этой задачи необходимо поддерживать оптимальное зарядное напряжение, формируемое штатным регулятором напряжения (далее регулятор), входящим в электрооборудование автомобиля. Недостаток традиционных регуляторов поддержание ими фиксированного напряжения (обычно 14,1±0,2 В), хотя известно ([1]), что это напряжение должно изменяться в соответствии с выражением: Uт=U0(1+КэТ), где Uт - напряжение, которое необходимо приложить к клеммам аккумулятора для обеспечения оптимального тока заряда, при температуре электролита Т °С; U0=14,56 В - напряжение, которое необходимо приложить к клеммам аккумулятора для обеспечения оптимального тока заряда, при температуре электролита 0 °С; Кэ= -1,65х10-3 1/°С - температурный коэффициент сопротивления электролита; Т - температура электролита, °С.

Из этого выражения следует, что оптимальное напряжение, формируемое регулятором при изменении температуры электролита от -10 до +40 °С должно изменяться от 14,8 до 13,6 В соответственно. Поскольку отклонение напряжения сети автомобиля от оптимального на 0,4 В снижает срок службы аккумулятора на 25 %, т.е. приблизительно на 1 год (по другим источникам [2] отклонение зарядного напряжения на 10... 12 % от оптимального снижает срок службы аккумулятора в 2... 2,5 раза), необходимость температурной коррекции работы регулятора бесспорна. С этой целью был разработан регулятор, имеющий функцию ции поддерживаемого в электросети автомобиля напряжения. От ранее опубликованных регуляторов напряжения, содержащих аналогичную функцию [2], предлагаемый отличается простотой схемы, унифицированностью (устанавливают вместо штатного регулятора) и отсутствием всяких регулировок, поскольку подбор элементов схемы определяется расчетным путем.

Термокомпенсированный регулятор напряжения

Схема регулятора (см. рисунок) каких-либо особенностей не имеет. К диагонали измерительного моста подключают компаратор напряжения. В одно из плеч измерительного моста включен источник образцового напряжения, а в другое - термодатчик, имеющий тепловой контакт с электролитом. С выхода компаратора сигнал, через открытый эмиттер, поступает на мощный выходной ключ, коммутирующий ток через обмотку возбуждения генератора.

Элементы измерительного моста - R1, R2, Rд, R3, VD1. Резистор R3 и стабилитрон VD1 образуют источник опорного напряжения. Резистор R4 обеспечивает обратную связь для получения эффекта электрического гистерезиса в работе компаратора DA1. Конденсатор С1 предназначен для подавления помех, наводимых на проводе, ведущему к термодатчику Rд. Компаратор DA1 в зависимости от сигнала, поступающего на его прямой вход, управляет работой транзистора VT1. Резисторы R5, R6 ограничивают выходной ток открытого эмиттера компаратора, а также обеспечивают смещение на базу транзистора VT1, необходимое для его надежного открывания-закрывания. Транзистор VT1 коммутирует ток через обмотку возбуждения. Диоды VD2, VD3 защищают транзистор VT1 от выбросов напряжения самоиндукции, возникающих на обмотке возбуждения в момент его запирания.

Напряжение с клемм аккумулятора поступает на делитель напряжения R1, R2, Rд. Сигнал, снимаемый с термодатчика Rд и изменяющийся пропорционально его сопротивлению, поступает на прямой вход компаратора DA1 и сравнивается с опорным напряжением, формируемым стабилитроном VD1 и поступающим на инверсный вход компаратора. Если сигнал на прямом входе меньше опорного напряжения, компаратор DA1 выдает сигнал на транзистор VT1, который открывается и включает в работу обмотку возбуждения генератора. При превышении сигналом на прямом входе компаратора опорного напряжения происходит запирание транзистора VT1 и отключение обмотки возбуждения генератора. Благодаря обратной связи через резистор R4, разница между уровнями сигнала на прямом входе компаратора, при которых он выдает сигнал на включение и запирание транзистора VT1, составляет приблизительно 0,05 В.

Наладка устройства сводится к расчету и подбору значений элементов измерительного моста. Для этого необходим термометр с ценой деления 0,1 °С и комбинированный измерительный прибор, способный измерять напряжение с точностью до 10 мВ и сопротивление с точностью до 1 Ом.

Пример.

1. Измеряют сопротивление термодатчика при известной температуре, например, при Т=21 °С Rд=1883 Ом.

2. По формуле Rт=R0(1+КмT), где Rт, R0 - сопротивление медного проводника при температуре Т °С и 0 °С соответственно; Км=4,26х10-3 1/°С - температурный коэффициент сопротивления меди; Т - температура термодатчика (электролита), °С, находят R0=1728 Ом.

3. Используя полученное значение R0, по этой же формуле вычисляют значения Rт для температуры -10 и +40 °С; R-10=1655 Ом; R+40=2023 Ом.

4. Подключив источник питания напряжением +14 В к выводу "Б", измеряют опорное напряжение Uоп= 8,84 В.

5. Последовательно для температуры -10 и +40 °С находят суммарное сопротивление резисторов R1, R2 (R1+R2)т=(UтRт/Uоп) - Rт,

где Uт - напряжение, которое необходимо приложить к клеммам аккумулятора для обеспечения оптимального тока заряда, при температуре электролита Т °С (U-10=14,8 В; U+40=13,6 В) (R1+R2)-10=1116 Ом; (R1+R2)+40=1089 Ом.

6. Среднее значение этих двух величин: (R1+R2)ср=1102,5 Ом.

7. Учитывая, что R2~2R1, по номинальному ряду сопротивлений выбирают ближайшие значения сопротивлений указанных резисторов R1=360 Ом, R2=750 Ом.

При таком расчете относительная погрешность подбора сопротивлений резисторов R1, R2 не превышает 1 %.

Регулятор размещают в корпусе штатного, вышедшего из строя регулятора типа "шоколадка", например Я112-В. Для этого вскрывают приклеенную крышку, удаляют старую "начинку" и очищают металлическое основание. Транзистор VT1 плотно прижимают к металлическому основанию, предварительно подложив смазанную с обеих сторон смазкой ЛИТОЛ-24 слюдяную прокладку и припаивают крепежную пластину коллектора к внутренней части контактной площадки "Ш", а вывод эмиттера - к основанию корпуса. Компаратор DA1, конденсатор и резисторы располагают на отдельной монтажной плате.

Используя основание корпуса и штатные контактные площадки "Ш", "Б", "В", навесным монтажом крепят остальные элементы и внутрисхемные соединения. Для подключения термодатчика используют свободную контактную площадку (на схеме обозначается символом "А"), находящуюся на одной диагонали с контактной площадкой "В". Сам термодатчик обжимают медной пластиной, к которой припаивают один из его выводов, и заливают эпоксидной смолой. Второй вывод обмотки соединяют отдельным проводом с контактной площадкой "А". Поскольку эта цепь слаботочная, особых требований к проводу не предъявляют. Медную пластину выбирают такого размера, чтобы в ней просверлить крепежное отверстие для установки под крепежный винт "хомута" минусовой клеммы аккумулятора.

Саму клемму с отходящей от нее частью "минусовой" шины термоизолируют от окружающей среды. Учитывая относительно высокую теплопроводность свинцовых пластин аккумулятора, при таком способе крепления термодатчика получают минимальную разницу температур между электролитом и датчиком. Все элементы регулятора покрывают лаком, приклеивают крышку и устанавливают его на штатное место.

В регуляторе применяют следующие резисторы: R5 - типа МЛТ-0,25; остальные типа МЛТ-0,125, конденсатор С1 типа КМ

5. В качестве стабилитрона VD1 можно применить любой стабилитрон с напряжением стабилизации от 6 до 9 В, но учитывая, что регулятор устанавливают на корпус генератора, изменяющего при работе двигателя свою температуру в широком диапазоне, стабилитрон выбирают с возможно меньшим температурным коэффициентом изменения напряжения, например КС191Ф, Д818Е. Желательно определить его термостабильную точку по методике, изложенной в [3]. В качестве компаратора DA1 можно применить компаратор типа К554СА3, но следует учитывать, что эта микросхема имеет другую нумерацию выводов и несколько большие габаритные размеры, чем указанная на схеме. В качестве выходного ключа можно применить транзистор КТ829Б, но в любом случае коэффициент передачи тока транзистора VT1 должен быть не меньше 50. В качестве диодов VD2, VD3 можно использовать КД209А, а в качестве термодатчика обмотку сопротивлением 1...2 кОм малогабаритного реле, например, РЭС-60, выполненную медным проводом.

Литература:

  1. Справочник по схемотехнике для радиолюбителя / Под ред. В.П.Боровского - К.:Технiка, 1987.
  2. Ломанович В. Термокомпенсированный регулятор напряжения // Радио.-1985.- №5.- С.24-27.
  3. Иноземцев В. Определение термостабильной точки стабилитронов // Радио.- 1983.-№8.- С.31.

Автор: В.Г. Петик

Смотрите другие статьи раздела Регуляторы тока, напряжения, мощности.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Использование Apple Vision Pro во время операций 16.03.2024

Медицинская команда больницы Кромвеля в Лондоне впервые применила Apple Vision Pro в ходе двух операций на позвоночнике. Это событие подтверждает потенциал гарнитуры в качестве медицинского инструмента, изменяющего подход к хирургической практике. Хотя сами врачи не использовали Vision Pro, операционная медсестра работала с виртуальной реальностью, используя очки во время подготовки и выполнения процедур. Гарнитура позволила просматривать виртуальные экраны в операционной, выбирать инструменты и следить за ходом операции. Программное обеспечение, разработанное компанией eXeX, специализирующейся на создании приложений на основе искусственного интеллекта для хирургии, существенно улучшило процесс оказания медицинской помощи пациентам. Использование Apple Vision Pro открывает новые возможности для разработки приложений в сфере здравоохранения, таких как клиническое образование, планирование операций, обучение и медицинская визуализация. Внедрение Apple Vision Pro в медицинскую пр ...>>

Хранение углерода в Северное море 16.03.2024

Министр энергетики Норвегии Терье Осланд объявил о запуске проекта Longship, нацеленного на создание центрального хранилища углекислого газа в Северном море. Этот амбициозный проект оценивается в $2,6 млрд и направлен на применение технологии CCS (углеродного захвата и хранения) для смягчения воздействия климатических изменений. Норвегия уже имеет опыт в области CCS благодаря успешным проектам Sleipner и Snohvit, и сейчас стремится увеличить объем углерода, запечатываемого под морским дном. План Longship предусматривает создание мощности по захвату и хранению 1,5 млн. тонн углерода ежегодно в течение 25 лет. Несмотря на позитивные перспективы, существуют опасения по поводу долгосрочных последствий такого хранения. Однако сторонники проекта утверждают, что морское хранение углерода имеет ряд преимуществ, включая минимальное воздействие на окружающую среду. Проект Longship осуществляется при участии компаний Equinor, Shell и TotalEnergies через совместное предприятие Northern Li ...>>

Выращены мини-органы из амниотической жидкости человека 15.03.2024

Международная команда ученых под руководством профессора Фань Сюлиня из Университета Чжэцзян разработала уникальный способ выращивания мини-органов из клеток, обнаруженных в амниотической жидкости человека. Этот значительный прорыв в медицине может привести к улучшению диагностики и лечения врожденных заболеваний. Органоиды, представляющие собой трехмерные клеточные структуры, имитирующие органы в меньшем масштабе, были выращены из клеток легких, почек и тонкого кишечника, найденных в амниотической жидкости. Этот метод открывает новые возможности для изучения различных состояний плода и может стать ключом к ранней диагностике и лечению врожденных дефектов. Хотя пока не проводились попытки использования этого метода в лечении, ученые надеются, что их исследования в будущем помогут бороться с серьезными врожденными заболеваниями, которые затрагивают миллионы новорожденных ежегодно. Этот прорыв может изменить практику медицинских вмешательств, позволяя диагностировать и лечить врожд ...>>

Случайная новость из Архива

Компьютер читает эмоции 20.11.2007

Ученые из США создали устройство, которое способно определить, что человек, сидящий у компьютера, устал от работы или же скучает от ее отсутствия.

Главный компонент устройства, которое создали ученые из университета Тафтса (Массачусетс, США) во главе с профессором Робертом Якобом для угадывания эмоций сидящего перед компьютером человека, - инфракрасный лазер.

Излучаемый им импульс проникает сквозь лоб и проходит внутрь мозга. Ткани человека для излучения выбранной длины, в общем-то, прозрачны. Однако, встретившись с гемоглобином, импульс рассеивается и поступает в детектор. Таким способом можно выявить те области мозга, в которые поступает большее количество крови, то есть активно работающие.

При проверке работоспособности прибора участникам эксперимента показывали на экране компьютера крутящийся куб. Он состоял из восьми маленьких кубиков, грани которых были раскрашены в два, три и четыре цвета. В серии из 30 заданий надо было подсчитать количество цветов на каждой грани большого куба. По окончании эксперимента участников просили указать, какие задания им казались простыми, а какие - сложными. Результаты опроса совпали с данными лазерных измерений на 83%.

"Похоже, мы можем определять, сильно ли загружен человек, сидящий за компьютером", - говорит участница работы Леанна Хиршфельд.

Другие интересные новости:

▪ Одночиповый пакетный процессор для преобразования сигналов

▪ Apple Mac mini

▪ Монитор для слепых

▪ Камера для съемок цветного видео в абсолютной темноте

▪ Устройство для контроля сновидений

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Электропитание. Подборка статей

▪ статья Ваше благородие завсегда без дела лаяться изволите. Крылатое выражение

▪ статья В какой европейской стране женщина может жить мужской жизнью только сохраняя девственность? Подробный ответ

▪ статья Специалист, инженерно-технический работник, административно-управленический персонал. Типовая инструкция по охране труда

▪ статья Музыкальный автомат на микросхеме серии УМС-7,8. Энциклопедия радиоэлектроники и электротехники

▪ статья Переделка Р-326м в трансивер. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





All languages of this page

Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2024