Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Электронный балласт ламп ЛБ-20. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Освещение

Комментарии к статье Комментарии к статье

Основной недостаток ламп накаливания - низкий КПД и соответственно большой расход электрической энергии. Снизить потребление электрической энергии при освещении помещений можно, если использовать люминесцентные лампы, имеющие более высокий КПД. За рубежом в настоящее время широко применяют электронные балласты, обеспечивающие "гладкий", не пульсирующий свет.

Широкому внедрению электронных балластов в промышленность ранее препятствовали высокая стоимость компонентов, недостаточно высокая скорость переключения транзисторов и дорогостоящее производство. Все эти недостатки были устранены после выпуска новых экономичных драйверов МОП-затворов IR2151 фирмы International Rectifier и аналогичных других фирм. Эти драйверы представляют собой монолитные мощные интегральные схемы, способные управлять двумя транзисторами, МОП ПТ или БТИЗ полумостовых преобразователей. Они могут работать при напряжениях питания до 600 В, имеют четкие формы выходных импульсов с коэффициентом заполнения от 0 до 99 %.

Функциональная схема драйвера IR 2151 показана на рис.1.

Электронный балласт ламп ЛБ-20
(нажмите для увеличения)

Драйвер содержит входную часть на операционных усилителях, которая может работать в автогенераторном режиме. Частота определяется дополнительными навесными элементами, подключаемыми к выводам Cт, Rт.

Генераторы паузы на нуле обеспечивают задержки во включении выходного транзистора на 1 мкс после закрывания предыдущего транзистора. В канале верхнего плеча осуществляется гальваническая развязка, далее напряжение усиливается усилителем мощности на полевых транзисторах, и выходное напряжение с выхода HO поступает на затвор силового транзистора. Нижнее плечо работает от задающего генератора через генератор паузы на нуле и устройство задержки. Для обеспечения стабильности работы драйвера внутри имеется стабилитрон, ограничивающий напряжение до 15 В.

Схема электронного балласта показана на рис.2.

Электронный балласт ламп ЛБ-20
(нажмите для увеличения)

Частота работы преобразователя определяется цепью R2C5

fг = 1/(1,4R2C5) = 40 кГц.

Питание драйвера осуществляется через резистор R1, стабилизируется внутренним стабилитроном до 15 В и фильтруется конденсатором C4. Питание усилителя затвора верхнего плеча выполняется по схеме зарядного "насоса", т.е. через резистор R3 и диод VD5. Выходное напряжение преобразователя с конденсатора C7, поступающее на люминесцентные лампы, имеет прямоугольную форму. Лампы включены по последовательно резонансной схеме таким образом, что токи ламп протекают через накалы, после включения происходит разогрев накалов и зажигание ламп. Резонансные частоты контуров C9, L2 и C10, L3 равны 40 кГц.

Для уменьшения пик-фактора по потреблению электрической энергии нагрузка выпрямителя выбрана индуктивной (дроссель L1 и конденсатор C2, параллельно включенный конденсатор C3 служат для уменьшения амплитуды высокочастотной переменной составляющей). В этом случае нет необходимости во входном помехоподавляющем фильтре и обеспечивается "мягкое" включение в сеть (пик-фактором называется отношение амплитуды потребляемого тока к среднеквадратичному значению этого же тока).

Для ограничения скоростей переключения транзисторов на уровне 40-50 нс в затворы транзисторов включены резисторы R4 и R5 сопротивлением 24 Ом. Ограничивать скорости переключения необходимо для уменьшения влияния паразитных индуктивностей и емкостей монтажной платы. Ограничения скоростей переключения на таком уровне позволяет выполнить надежно работающую конструкцию.

При построении схемы необходимо правильно выбрать сопротивление ограничивающего резистора R1, для этого следует учесть все токи, протекающие через него: I0 - ток покоя микросхемы IR2151; I2 - ток, необходимый для включения затвора VT2; Iв - ток времязадающего резистора R2; Iн - ток зарядного "насоса" для питания усилителя верхнего плеча; Iс - ток внутреннего стабилитрона микросхемы для устойчивой работы стабилизатора.

Ток покоя микросхемы IR2151 при нормальной температуре составляет 1 мА и уменьшается на 10 % при повышении температуры на 100 °С. Принимаем его равным I0=1,1 мА.

Ток, необходимый для включения затвора VT2, определяем по формуле I2 = 2Qgfпр, где Qg - заряд затвора транзистора IRF730 (Qg = 18 нКл); fпр - частота преобразования, равная 40 кГц, т.е. I2 = 1,4 мА. Ток времязадающего резистора R2 Iв = 0,25 Ucc/R2 = 0,25 15/18•103 = 0,21 мА. Ток зарядного "насоса" имеет две составляющие: 1) при подаче включающего сигнала на затвор транзистора VT1 напряжение в первый момент мало и амплитуда тока приблизительно составляет 10 мА при длительности 200 нс; 2) при подаче выключающего сигнала на затвор транзистора VT1 напряжение в первый момент остается приблизительно равным напряжению питания выходного усилителя верхнего уровня микросхемы, амплитуда тока приблизительно составляет 20 мА при длительности 200 нс, тогда ток зарядного "насоса"

Iн=(10•10-3+20•10-3)200•10-9•40•103=0,24мА.

Ток внутреннего стабилитрона микросхемы может находится в пределах от 0,1 до 5 мА. С учетом изменения напряжений питающей сети выбираем ток внутреннего стабилитрона Iс = 0,5 мА.

Определим суммарный ток, протекающий через резистор R1,

IR1 = I0 + I2 + Iв + Iн +Ic = 1,1 + 1,4 + 0,21 + +0,24 + 0,5 = 3,45 мА

Сопротивление резистора R1

R1 = (190 - 15)/3,45•10-3 = 50 кОм.

Выбираем стандартное значение 47 кОм.

Конструктивно электронный балласт выполнен на двух платах. Входную часть (конденсатор C1, диоды VD1...VD4, дроссель L1, конденсатор C2) монтируют навесным монтажом. При подключении к промышленной сети последовательно необходимо включить предохранитель на ток 0,5 А. Остальная часть схемы расположена на печатной плате. Размещение на ней элементов показано на рис.3.

Электронный балласт ламп ЛБ-20

В качестве выпрямительных диодов VD1...VD4 можно использовать любые низкочастотные со средним прямым током более 0,2 А, максимальным обратным напряжением более 350 В (например, Д226, Д237Б, В, Ж, КД109В, КД209А, КД209Б или мостовой выпрямитель КЦ405). Вместо драйвера IR2151 можно применить IR2152, IR2153, IR2154, IR2155 без каких-либо изменений в схеме. Вместо полевых транзисторов IRF730 можно использовать аналогичные IRF720, IRF740. Радиаторов к транзисторам не требуется.

Все резисторы схемы типа МЛТ-0,125, резистор R1 - МЛТ-1, R6 МЛТ-0,5 . В качестве дросселя L1 можно использовать аналогичный с индуктивностью 1,3-2,0 Гн на ток 0,20,25 А, подойдет также дроссель от ламповых черно-белых телевизоров ДР2,3-0,21. Конденсаторы C8, C9, C10 типа К31У-3Е-5, можно использовать конденсаторы типа КСО, К73-17. Конденсатор C2 типа К50-7; C5, C6 - КМ5; С1, С3, С7 типа К73-17 на напряжение 400 В.

Печатная плата выполнена таким образом, что номиналы резистора R1, конденсаторов C9, C10 можно подобрать параллельным включением.

Индуктивности L2 и L3 намотаны на кольцах из альсифера марки ВЧ-32Р диаметром 29 мм и содержат по 320 витков провода ПЭВ-2 диаметром 0,3 мм. В качестве сердечника можно использовать феррит Ш7х7 µ2000НМ с зазором 0,5 мм. Без всяких изменений в схеме вместо ламп ЛБ-20 можно использовать широко выпускаемые в настоящее время лампы мощностью 18 Вт. Необходимо также отметить, что с электронным балластом зажигаются и горят лампы с вышедшими из строя нитями накала (в этом случае накалы ламп необходимо закоротить).

Нормально работающий балласт по цепи 190 В должен потреблять ток 0,2 - 0,21 А (измерение можно выполнить между двумя платами конструкции).

Выполненный осветитель на настоящий момент проработал 5 мес, дает освещенность большую, чем от лампы накаливания 100 Вт, включение без бросков тока, зажигание ламп происходит практически мгновенно и что особо важно, при работе с литературой замечается гораздо меньшее уставание глаз.

Автор: Д.П. Афанасьев

Смотрите другие статьи раздела Освещение.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Ранняя Вселенная не была ледяной 28.11.2025

Понимание того, как формировались первые структуры во Вселенной, требует взгляда в эпохи, в которых не существовало ни звезд, ни галактик, ни привычных нам источников света. Научные группы по всему миру пытаются восстановить картину тех времен при помощи слабейших радиосигналов, оставшихся от водорода, который наполнял космос вскоре после Большого взрыва. Новые результаты, полученные на радиотелескопе Murchison Widefield Array в Австралии, неожиданным образом меняют представление об этих ранних этапах. Сразу после Большого взрыва, произошедшего около 13,8 миллиарда лет назад, пространство стремительно расширялось и остывало. Через несколько сотен тысяч лет образовался нейтральный водород, и началась так называемая эпоха тьмы, когда Вселенная была лишена источников излучения. Лишь значительно позже гравитация собрала газ в плотные области, где зародились первые звезды и ранние черные дыры, а их интенсивное излучение привело к реионизации водорода и окончательному появлению света. ...>>

Устройство идеальной очистки воздуха 28.11.2025

Качество воздуха в закрытых помещениях давно стало важнейшим фактором здоровья, особенно в городах, где люди проводят подавляющую часть времени внутри зданий. В последние годы исследователи уделяют все больше внимания именно тем технологиям, которые способны задерживать или разрушать вредоносные частицы до того, как они попадут в дыхательные пути человека. Одним из таких новаторских направлений стала разработка инженеров Университета Британской Колумбии в Оканагане, которые предложили принципиально иной подход к очистке воздуха в присутствии людей. По словам профессора Школы инженерии доктора Санни Ли, традиционные персонализированные вентиляционные системы действительно могут улучшать качество воздуха вокруг пользователя, однако их принцип работы имеет ряд ограничений. Человек вынужден находиться в строго определенной зоне, а одновременное использование одной системы несколькими людьми снижает эффективность. Кроме того, непрерывный поток сухого очищенного воздуха способен вызывать ...>>

Ощущение текстуры через экран гаджета 27.11.2025

Гаджеты научились передавать изображение и звук с впечатляющей реалистичностью, но тактильные ощущения по-прежнему остаются недоступными для полноценной цифровой симуляции. Именно поэтому инженеры и исследователи во всем мире стремятся создать технологии, которые позволят "почувствовать" виртуальный объект так же естественно, как и настоящий. Новая разработка специалистов Северо-Западного университета США стала одним из самых заметных шагов в этом направлении. Возглавлявшая исследование аспирантка Сильвия Тан (Sylvia Tan) подчеркивает, что прикосновение остается последним фундаментальным чувственным каналом, для которого пока нет зрелого цифрового аналога. По ее словам, если визуальные и звуковые интерфейсы давно обеспечивают высокую степень реалистичности, то осязание лишь начинает приближаться к этому уровню. В недавней публикации в журнале Science Advances Тан отмечает, что новая технология способна изменить само представление о взаимодействии человека с устройствами. Разработ ...>>

Случайная новость из Архива

Переводчик для слепого 20.09.2008

Французская фирма "Vision SAS" начала выпуск приборчика размером чуть больше компьютерной мыши, который посредством миниатюрной видеокамеры читает печатный текст со скоростью 20 знаков в секунду и переводит его в знаки алфавита Брайля, а одновременно воспроизводит его вслух через наушник.

Под указательным пальцем пользователя находится матрица из шести пластмассовых шпеньков, которые выступают вверх или прячутся, рисуя буквы алфавита Брайля. Специальный индикатор предупреждает, если текст перевернут вверх ногами или видеокамера сбилась со строки.

Встроенного аккумулятора хватает на шесть часов чтения. Однако стоимость прибора - 3000 евро.

Другие интересные новости:

▪ Еда как наркотик

▪ Трамвайная линия с участком без контактной сети

▪ Компьютерные очки для медитации

▪ Нужна ли спортсменам разминка

▪ HP поставит производство 3D-принтеров на поток

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Радиолюбителю-конструктору. Подборка статей

▪ статья И не давал ему ни отдыху, ни сроку. Крылатое выражение

▪ статья Кто из американских президентов был изобретателем? Подробный ответ

▪ статья Рута душистая. Легенды, выращивание, способы применения

▪ статья Инфракрасный порт и работа с ним. Энциклопедия радиоэлектроники и электротехники

▪ статья Источник питания на микросхеме UCC28810 для светодиодного светильника мощностью 18...48 Вт. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025