Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Цифровой регулятор мощности. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Регуляторы тока, напряжения, мощности

Комментарии к статье Комментарии к статье

Это устройство предназначено для фазового регулирования мощности в трехфазных электротепловых установках. Допустимая мощность нагрузки в первую очередь зависит от мощности коммутирующих элементов регулятора. С неменьшим успехом он может работать и в однофазных сетях, а также с нагрузкой меньшей мощности. Особенность регулятора состоит в том, что значение угла управления может быть задано в цифровом виде; иными словами, мощностью нагрузки может управлять микропроцессор.

регуляторе использован импульсный метод регулирования коммутирующими элементами - симметричными тиристорами. Время фазового регулирования определяет число разрядов в счетчике узла управления и период сетевого напряжения. Структурная схема трехфазного варианта регулятора изображена на рис.1.


Рис.1

Цифровой код регулирования от управляющего микропроцессора поступает на вход трех одинаковых по схеме узлов управления - каналов А, В и С. Фазовая информация, необходимая для работы каждого канала, поступает от трехфазной сети питания нагрузки. Каждый канал вырабатывает сигнал управления своим симистором. Для питания цепей каналов служит отдельный источник стабилизированного напряжения 5 В.

Принципиальная схема одного из каналов представлена на рис.2. Синусоидальное фазное напряжение через резистор R1 поступает к узлу синхронизации, выполненному на сдвоенном оптроне U1.


Рис.2 (нажмите для увеличения)

При положительной полуволне ток протекает через светодиод оптрона U1.1 и транзистор этого оптрона открыт, поэтому на входах логического элемента DD1.1 низкий уровень сигнала. При отрицательной полуволне открыт транзистор оптрона U1.2 и на входах элемента DD1.1 также низкий уровень.

Но в моменты, когда сетевое напряжение переходит через нуль, оба светодиода выключены, транзисторы оптронов закрыты, а на входах элемента DD1.1 на короткие отрезки времени появляется уровень 1. На выходе этого элемента формируются прямоугольные синхроимпульсы в моменты, когда фазное сетевое напряжение равно нулю.

Синхроимпульсы поступают одновременно на вход разрешения записи РЕ счетчика DD2, на один из входов RS-триггера, собранного на элементах DD3.1, DD3.2, и на управляющий вход генератора импульсов (на один из входов элемента DD1.3). Когда на вход РЕ счетчика DD2 приходит напряжение низкого уровня, то код, зафиксированный ранее по параллельным входам D1-D4 счетчика, загружается в него независимо от сигналов на тактовых входах, т. е. операция параллельной загрузки асинхронна.

исходном положении на выходе >=15 счетчика высокий уровень. Если счет достиг максимума, то с приходом следующего отрицательного тактового перепада на вход +1 счетчика на его выходе появится уровень 0. Таким образом, на входы RS-триггера DD3.1, DD3.2 поступают импульсы низкого уровня: синхроимпульс с логического элемента DD1.1 и выходной импульс счетчика DD2, смещенный по отношению к синхроимпульсу на время, определяемое цифровым кодом на параллельных входах D1- D4 счетчика.

На выходе RS-триггера появляется сигнал высокого уровня, разрешающий прохождение импульсов генератора на выход элемента совпадения DD4.1. Этот элемент формирует пачки коротких импульсов, которые через импульсный трансформатор Т1 поступают на управляющий переход симистора канала и открывают его. Импульсный трансформатор позволяет гальванически развязать цепи канала от сети.

Ток, потребляемый всеми тремя каналами от источника стабилизированного напряжения 5 В,- около 100 мА.

Генератор импульсов выполнен на логических элементах DD1.2-DD1.4. Частоту fг импульсов генератора выбирают в соответствии с зависимостью fг=2Fc(2n-1), Гц, где Fc - частота питающей сети, Гц; n -число разрядов счетчика. Для рассматриваемого случая fг=2*50*(24-1)=1500 Гц.

Импульсный трансформатор Т1 - серийный, МИТ-4, имеющий три одинаковые обмотки по 100 витков.

Налаживание регулятора мощности заключается в установке требуемой частоты генератора.

Смотрите другие статьи раздела Регуляторы тока, напряжения, мощности.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Впервые преоодолена передача ВИЧ от матери к ребенку 02.01.2026

Проблема вертикальной передачи ВИЧ - от матери к ребенку - остается одной из ключевых задач глобальной медицины. Недавний отчет Всемирной организации здравоохранения (ВОЗ) демонстрирует историческое достижение: Бразилия впервые в своей истории полностью преодолела этот путь передачи вируса. Страна стала 19-й в мире и первой с населением более 100 миллионов человек, которая достигла такого результата. Достижения Бразилии основаны на комплексных медицинских программах, обеспечивающих своевременный доступ к диагностике и терапии для всех слоев населения. ВОЗ официально подтвердило, что уровень передачи ВИЧ от матери к ребенку снизился до менее двух процентов. Более 95% беременных женщин в стране получают регулярный скрининг на ВИЧ и необходимое лечение в рамках стандартного ведения беременности. Изначально программа тестировалась в крупных муниципалитетах и штатах с населением более 100 тысяч человек, а затем была масштабирована на всю страну. Такой подход позволил унифицировать ста ...>>

Нанослой германия увеличивает эффективность солнечных батарей на треть 02.01.2026

Разработка высокоэффективных солнечных батарей остается одной из ключевых задач современной энергетики. Недавнее исследование южнокорейских ученых позволило повысить производительность тонкопленочных солнечных элементов почти на 30%, что открывает новые перспективы для возобновляемых источников энергии, гибкой электроники и сенсорных устройств. Команда исследователей сосредоточилась на элементах на основе моносульфида олова (SnS) - нетоксичного и доступного материала, который идеально подходит для гибких солнечных панелей. До настоящего времени эффективность SnS-устройств оставалась низкой из-за проблем на границе контакта с металлическим электродом. В этой области возникали структурные дефекты, диффузия элементов и электрические потери, что существенно ограничивало возможности таких батарей. "Этот интерфейс был главным барьером для достижения высокой производительности", - отмечает профессор Джейонг Хо из Национального университета Чоннам. Для решения этих проблем ученые предлож ...>>

Электростатическое решение для борьбы с льдом и инеем 01.01.2026

Борьба с льдом и инеем на транспортных средствах и критически важных поверхностях зимой остается сложной и затратной задачей. Ученые из Virginia Tech разработали инновационную технологию, способную разрушать лед и иней без использования тепла или химических реагентов, что открывает новые возможности для безопасной и экологичной зимней эксплуатации транспорта. Исследователи обнаружили, что лед и иней образуют кристаллическую решетку с так называемыми ионными дефектами - заряженными участками, способными перемещаться под воздействием электрического поля. Эти дефекты являются ключом к управлению прочностью льда и его удалением с поверхностей. Когда на замерзшую поверхность подается положительный электрический заряд, отрицательные ионные дефекты притягиваются к источнику поля. Это вызывает разрушение кристаллической решетки льда, в результате чего часть льда буквально "отскакивает" от поверхности. Такой эффект позволяет удалять лед без применения внешнего тепла или химических средств ...>>

Случайная новость из Архива

Мозг быстрее реагирует на агрессивный голос, чем на спокойный 19.12.2018

Исследователи из Женевского университета (Швейцария), изучили активность мозга при обработке голосов, которые звучат с различными интонациями и эмоциями. Оказалось, что мы намного быстрее обращаем внимание на голос человека, когда он обращается к нам с агрессией, нежели когда говорит спокойным тоном. Так происходит, чтобы мы могли четко определить местонахождение потенциальной угрозы. Исследование Новая работа раскрывает ресурсы, задействованные нашим мозгом, когда мы чувствуем опасность.

Зрение и слух - это два чувства, благодаря которым люди могут обнаруживать угрожающие ситуации. Хотя зрение очень важно, оно не позволяет охватить окружающее пространство на 360 градусов - в отличие от слуха.

Чтобы исследовать реакцию мозга на "звуковые" угрозы, исследователи записали 22 человеческих голоса (каждая запись длилась всего 600 миллисекунд), которые были нейтральными или выражали либо гнев, либо радость. Затем эти звуки, исходящие из двух динамиков, слушали 35 участников. В момент прослушивания прибор для электроэнцефалограммы (ЭЭГ) измерял электрическую активность мозга вплоть до миллисекунды. В частности, исследователи изучали слуховое внимание - процесс обработки мозгом информации, полученной с помощью звука. "Каждый участник слышал два звука одновременно: два нейтральных голоса, один нейтральный и один злой, или один нейтральный и один радостный голос. Когда они слышали в голосе гнев или радость, они должны были реагировать, нажимая клавишу на клавиатуре так точно и быстро, как это было возможно", - объясняет Леонардо Чераволо (Leonardo Ceravolo), исследователь Швейцарского центра аффективных наук при Женевском университете. "Затем мы измерили интенсивность мозговой активности, когда внимание было сфокусировано на разных звуках, а также продолжительность этого фокуса до возвращения в основное состояние", - добавляет он.

Используя данные ЭЭГ, исследователи выявили появление церебрального "маркера" слухового внимания под названием N2ac. Как объясняют ученые, когда мозг воспринимает эмоциональный звук, активность N2ac запускается через 200 миллисекунд. Однако, когда он воспринимает гнев, N2ac усиливается и длится дольше, чем в случае радости.

Впоследствии, через 400 миллисекунд, наше внимание должно отключиться от источника звукового сигнала. В этот момент вмешивается другой "маркер" слухового внимания - LPCpc. Интересно, что активность LPCpc также сильнее для злых, чем для счастливых голосов. Но почему? Ответ: гнев может сигнализировать о потенциальной угрозе, поэтому мозг анализирует эти виды раздражителей в течение более длительного времени. В слуховой среде этот механизм позволяет нам не тревожиться при малейшем потенциально угрожающем шуме или, наоборот, выбирать наиболее правильное поведение в случае опасности. Поэтому эти дополнительные миллисекунды внимания имеют решающее значение для точной интерпретации угрозы.

Другие интересные новости:

▪ Вред музыки перед сном

▪ Адсорбент вместо холода

▪ Прозрачный бетон

▪ Процессорная архитектура LoongArch

▪ Умная лампочка с управлением через Bluetooth и Zigbee

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Основы безопасной жизнедеятельности (ОБЖД). Подборка статей

▪ статья Иоганн Каспар Лафатер. Знаменитые афоризмы

▪ статья Когда была изобретена стиральная машина? Подробный ответ

▪ статья Маланга. Легенды, выращивание, способы применения

▪ статья Сургучи. Простые рецепты и советы

▪ статья Подготовка платы к облужению. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025