Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Зарядное устройство на микроконтроллере PIC12F675. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Зарядные устройства, аккумуляторы, гальванические элементы

Комментарии к статье Комментарии к статье

Данное зарядное устройство (ЗУ) автоматизирует процесс зарядки аккумуляторов. Если аккумулятор не разряжен до напряжения 1 В, оно проведет его разрядку до этого напряжения и только потом начнется зарядка. По ее окончании ЗУ проверит работоспособность аккумулятора и, если он неисправен, подаст соответствующий сигнал.

Предлагаемое ЗУ предназначено для одновременной независимой зарядки трех Ni-Cd или Ni-Mh аккумуляторов типоразмера АА или ААА током 0,23 А. Оно разработано на основе аналогичной конструкции, описанной в [1]. С целью упрощения в нем применен микроконтроллер со встроенным аналого-цифровым преобразователем Принципиальная схема собственно ЗУ показана на рис. 1. Оно состоит из узла управления и трех одинаковых по схеме разрядно-зарядных ячеек А1- A3. Для его питания применен сетевой импульсный блок питания (БП), схема которого показана на рис. 2. За его основу взята конструкция, описание которой было опубликовано в [2].

Зарядное устройство на микроконтроллере PIC12F675
Рис. 1

Узел управления собран на микроконтроллере (МК) DD1 и регистре DD2. Выбор МК PIC12F675 обусловлен наличием встроенного аналого-цифрового преобразователя и невысокой стоимостью. Коды программы, по которой он работает, представлены в таблице. Питание микросхем DD1, DD2 стабилизировано интегральным стабилизатором DA1. Светодиод HL1 выполняет функции индикатора включения.

Зарядное устройство на микроконтроллере PIC12F675
Рис. 2

Каждая разрядно-зарядная ячейка состоит из стабилизатора тока на микросхеме 1DA1 (здесь и далее указаны позиционные обозначения элементов ячейки А1) с токозадающим резистором 1R2, электронных ключей на транзисторах 1VT1-1VT3, индикатора разрядки на светодиоде 1HL2 желтого цвета свечения и индикатора зарядки на светодиоде 1HL1 красного цвета свечения.

В БП резистор R1 ограничивает пусковой ток. Диодный мост VD1 выпрямляет напряжение сети, а фильтр C1C2L1 сглаживает пульсации выпрямленного напряжения. Преобразователь напряжения собран на микросхеме TNY264P и работает на частоте около 132 кГц. Элементы VD2, R5, C3 образуют демпфирующую цепь, подавляющую выбросы напряжения на первичной обмотке трансформатора Т1. Напряжение вторичной обмотки трансформатора Т1 выпрямляет диод VD3, а фильтр C6L2C7 сглаживает выпрямленное напряжение. Для контроля выходного напряжения применены оптрон U1, стабилитрон VD4 и резистор R6.

После подачи питающего напряжения МК DD1 последовательно проверяет наличие подключенных к ячейкам аккумуляторов. При отсутствии напряжения на гнезде XS1 МК DD1 "делает вывод", что аккумулятор не установлен и переходит к анализу состояния следующей ячейки.

Зарядное устройство на микроконтроллере PIC12F675

Когда аккумулятор подключен, МК DD1 измеряет его напряжение, и если оно более 1 В, ячейка включается на режим разрядки. На выводе 5 регистра DD2 появляется высокий уровень напряжения, открывается транзистор 1VT3, и через него и резистор 1R8 протекает ток разрядки около 100 мА, а светодиод 1HL2 начинает светить, индицируя этот режим.

Как только напряжение аккумулятора станет менее 1 В, МК DD1 выключит режим разрядки и светодиод 1HL2 погаснет. Высокий уровень появится на выводе 6 регистра DD2, откроются транзисторы 1VT1 и 1VT2, начнется зарядка аккумулятора и загорится светодиод 1HL1. В этом режиме МК DD1 периодически измеряет напряжение на аккумуляторе, и когда оно достигнет значения 1,45 В, он начинает проверять возрастает напряжение или нет. Когда напряжение перестает увеличиваться, режим зарядки прекращается и кратковременно включается режим разрядки (загорается светодиод 1HL2) и измеряется напряжение на аккумуляторе. Если оно будет 1,1 В и менее, что свидетельствует о неудовлетворительном состоянии аккумулятора, светодиод 1HL2 станет мигать. При подключении к ЗУ аккумулятора, напряжение на котором менее 1 В, режим зарядки включается сразу.

Для охлаждения элементов ЗУ применен вентилятор М1, который начинает работать при включении режима зарядки любого из аккумуляторов. Так как на него поступает напряжение питания меньше номинального (примерно 8,5 В), вращается он медленно, но производительности достаточно для охлаждения устройства. После окончания зарядки всех аккумуляторов вентилятор прекращает работу, а светодиод HL1 зеленого цвета свечения начинает мигать, показывая, что ЗУ можно отключить от сети.

Зарядное устройство на микроконтроллере PIC12F675
Рис. 3

Детали ЗУ монтируют на печатной плате из односторонне фольгированного стеклотекстолита, чертеж которой показан на рис. 3. Она рассчитана на установку постоянных резисторов МЛТ, С2-33, оксидных конденсаторов - К50-35 или импортных конденсаторов С1, С2, С4 - К73-17. Светодиоды могут быть любого типа диаметром корпуса 3...5 мм, желательно повышенной яркости свечения. Для установки микросхем DD1, DD2 применены панели, резисторы 1R2, 1R4, 1R6, 1R8 установлены перпендикулярно плате. Все светодиоды установлены со стороны печатных проводников, там же размещены четыре перемычки из провода МГТФ-0,12. Вентилятор М1 с напряжением питания 12 В и размерами 8x40x40 мм - от компьютерной техники.

Зарядное устройство на микроконтроллере PIC12F675
Рис. 4

Чертеж печатной платы БП показан на рис. 4. Для трансформатора использован магнитопровод EFD25 с каркасом. Суммарный зазор между половинами магнитопровода - 0,2 мм. Первичная обмотка содержит 171 виток провода ПЭВ-2 0,13, вторичная - 15 витков провода ПЭВ-2 0,75, дроссель L1 - SBCP-47HY102B фирмы TOKIN, дроссель L2 - ДМ-3. Для получения выходного напряжения 9 В применен стабилитрон BZX79-B8V2 с напряжением стабилизации 8,2 В. Более подробно о конструкции и деталях БП рассказано в [2].

Зарядное устройство на микроконтроллере PIC12F675

Платы соединены между собой винтами и пластмассовыми стойками длиной около 32 мм (рис. 5). После сборки плат их размещают в корпусе подходящего размера с посадочными местами для аккумуляторов на одной стороне и вилкой для подключения к сети на другой. Вентилятор размещен в нижней части корпуса (рис. 6) там же, а также в верхней части сделано несколько вентиляционных отверстий.

Зарядное устройство на микроконтроллере PIC12F675
Рис. 6

Налаживания устройство не требует. Перед установкой микросхем в панели надо проверить напряжения на выходе блока питания и на выходе стабилизатора DA1.

Готовую программу можно скачать отсюда.

Литература

  1. Деменев М, Королева И. "Интеллектуальное" зарядное устройство. - Радио, 2002, № 1, с. 38, 39, 42.
  2. Плетнев Е. Малогабаритный сетевой источник питания на микросхеме TNY264. - Радио, 2006, № 6, с. 33, 34.

Автор: В. Киба, г. Каменск-Шахтинский Ростовской обл.; Публикация: radioradar.net

Смотрите другие статьи раздела Зарядные устройства, аккумуляторы, гальванические элементы.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Оптимальная продолжительность сна 12.11.2025

Сон играет ключевую роль в поддержании здоровья, когнитивных функций и общего самочувствия. Несмотря на широко распространенный стереотип о восьмичасовом сне, последние исследования показывают, что оптимальная продолжительность сна для большинства здоровых взрослых ближе к семи часам. Эволюционный биолог из Гарварда, Дэниел Э. Либерман, утверждает, что традиционная норма восьми часов сна - это скорее культурное наследие индустриальной эпохи, чем биологическая необходимость. По его словам, полевые исследования, проведенные в сообществах, не использующих электричество, показывают, что средняя продолжительность сна составляет 6-7 часов, что значительно отличается от общепринятого стандарта. Современные эпидемиологические данные подтверждают этот взгляд. Исследования выявили так называемую "U-образную кривую" зависимости между продолжительностью сна и рисками для здоровья. Минимальные показатели заболеваемости и смертности наблюдаются именно у людей, спящих около семи часов в сутки. ...>>

Дефицит кислорода усиливает выброс закиси азота 12.11.2025

Парниковые газы играют ключевую роль в изменении климата, а закись азота (N2O) - один из наиболее опасных среди них. Этот газ не только втрое сильнее углекислого газа в удержании тепла, но и разрушает озоновый слой. Недавнее исследование американских ученых показало, что микробы в зонах с низким содержанием кислорода активно производят N2O, усиливая глобальные климатические риски. Команда из Университета Пенсильвании изучала прибрежные воды у Сан-Диего и провела наблюдения на глубинах от 40 до 120 метров в Восточной тропической северной части Тихого океана - одной из крупнейших зон дефицита кислорода. Исследователи сосредоточились на том, как морские микроорганизмы превращают нитраты в закись азота. В ходе работы выяснилось, что существует два пути образования N2O. Один путь начинается с нитрата, другой - с нитрита. На первый взгляд более короткий путь должен быть эффективнее, однако микробы, использующие нитрат, продуцируют больше газа, поскольку этот "сырьевой" источник более д ...>>

Омега-3 помогают молодым кораллам выживать 11.11.2025

Сохранение коралловых рифов становится все более актуальной задачей в условиях глобального изменения климата. Молодые кораллы особенно уязвимы на ранних стадиях развития, когда стрессовые условия и нехватка питательных веществ могут привести к высокой смертности. Недавнее исследование ученых из Технологического университета Сиднея показывает, что специальные пищевые добавки способны существенно повысить выживаемость личинок кораллов. В ходе работы исследователи разработали особый состав "детского питания" для коралловых личинок. В него вошли масла, богатые омега-3 жирными кислотами, а также важные стерины, необходимые для формирования клеточных мембран. Личинки, получавшие эти добавки, развивались быстрее, становились крепче и демонстрировали более высокую устойчивость к стрессовым факторам. Особое внимание ученые уделили липидам. Анализ показал, что личинки активно усваивают эти вещества, что напрямую влияет на их жизнеспособность. Стерины, содержащиеся в корме, повышают устойчи ...>>

Случайная новость из Архива

Выращивание стволовых клеток на МКС 10.05.2023

Ученые отправят стволовые клетки в космос, чтобы исследовать влияние слабой гравитации или микрогравитации в космосе на них.

Индуцированные плюрипотентные стволовые клетки (iPSC) - тип стволовых клеток, которые могут развиться в три основных группы клеток, составляющих человеческий организм, - будут культивироваться в космосе на борту Международной космической станции (МКС) астронавтами, летящими на частной миссии Axiom Space Ax 2. Запуск миссии запланирован на борту ракеты SpaceX Falcon 9 21 мая из космического центра имени Кеннеди во Флориде.

Выращивание этих клеток и предоставление им возможности дифференцироваться в космосе позволит исследователям определить, влияет ли микрогравитация на то, как iPSC развиваются в другие типы клеток, такие как клетки мозга и сердца.

iPSC - это мощный тип клеток, который был перепрограммирован из взрослой клетки, чтобы вернуться в состояние, называемое "плюрипотентность". Находясь в этом состоянии, клетка может превратиться почти в любой тип клеток, встречающихся в человеческом организме. Это делает iPSC важным для создания моделей болезней и разработки специфических методов лечения.

Однако производство iPSC на Земле является сложной задачей, отчасти из-за гравитационного влияния планеты, которое может ограничивать расширение и рост этих клеток. В условиях низкой гравитации, как на МКС, вращающейся вокруг Земли на высоте около 408 км, этот барьер можно устранить.

Другие интересные новости:

▪ Переработка биопластика в биорастворитель

▪ Запущена космическая ракета с напечатанным двигателем

▪ Умный гидрогель для трехмерной печати

▪ Ветряные мельницы XXI века

▪ Запах болезни переходит с больных на здоровых

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Заземление и зануление. Подборка статей

▪ статья Гидростат управляет погружением. Советы моделисту

▪ статья Как исполняет музыку глухонемой финский рэпер Signmark? Подробный ответ

▪ статья Шпионские штучки. Справочник

▪ статья Синтез цифровых схем. Энциклопедия радиоэлектроники и электротехники

▪ статья Полевые транзисторы серии КП727. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025