Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Усовершенствование импульсного стабилизатора напряжения. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Стабилизаторы напряжения

Комментарии к статье Комментарии к статье

В журнале "Радио" № 8 за 1985 год в статье "Простой ключевой стабилизатор напряжения" был описан импульсный стабилизатор напряжения, который при относительной простоте технического решения имеет высокие энергетические показатели и вполне пригоден для электропитания устройств на микросхемах ТТЛ. Вместе с этим при дальнейшей доработке стабилизатора такие его характеристики, как КПД, нестабильность выходного напряжения, длительность и характер переходного процесса при воздействии импульсной нагрузки, удалось значительно улучшить.

Установлено, что при работе стабилизатора возникает так называемый сквозной ток через составной ключевой транзистор. Этот ток появляется в те моменты, когда по сигналу узла сравнения ключевой транзистор открывается, а коммутационный диод еще не успел закрыться. Наличие этого тока вызывает дополнительные потери на нагревание транзистора и диода и уменьшает КПД всего устройства.

Еще один недостаток - значительная пульсация выходного напряжения при токе нагрузки, близком к предельному. Для борьбы с пульсациями в стабилизатор был введен дополнительный выходной LC-фильтр (L2C6). Уменьшить нестабильность выходного напряжения от изменения тока нагрузки можно только уменьшением активного сопротивления дросселя L2. Улучшение динамики переходного процесса (в частности, понижение его длительности) связано с необходимостью уменьшить индуктивность дросселя, но при этом неизбежно увеличится пульсация выходного напряжения.

Усовершенствование импульсного стабилизатора напряжения
Рис.1 (нажмите для увеличения)

Поэтому оказалось целесообразным фильтр L2C6 исключить (рис. 1), а общую емкость конденсаторов С3, С4 увеличить в 5...10 раз параллельным соединением в батарею нескольких конденсаторов. На рис. 2 изображен вид переходного процесса в доработанном стабилизаторе при импульсном характере нагрузки. Сравнение с графиком, представленным на рис. 3,а в вышеупомянутой статье, показывает значительное улучшение переходного процесса.

Усовершенствование импульсного стабилизатора напряжения
Рис.2

Нагрузочные характеристики Uвых=f(Iн) (см. также рис. 2,б той же статьи) при различных значениях входного напряжения доработанного стабилизатора изображены на рис. 3. Из сравнения этих рисунков видно, что нестабильность выходного напряжения в интервале выходного тока от 0,5 до 4 А при входном напряжении 15...25 В уменьшилась в 2 раза.

Усовершенствование импульсного стабилизатора напряжения
Рис.3

Цепь R3C2 в исходном стабилизаторе практически не изменяет длительности спада выходного тока, поэтому ее можно удалить (замкнуть резистор R3), а сопротивление резистора R4 увеличить до 820 Ом. Но тогда при увеличении входного напряжения с 15 В до 25 В ток, протекающий через резистор R4 (в исходном устройстве), будет увеличиваться в 1,7 раза, а мощность рассеивания - в 3 раза (до 0,7 Вт). Подключением нижнего по схеме вывода резистора R4 (на схеме доработанного стабилизатора он тоже R4) к плюсовому выводу конденсаторов С3, С4 этот эффект можно ослабить, но при этом его сопротивление должно быть уменьшено до 620 Ом.

Один из эффективных путей борьбы со сквозным током - увеличение времени нарастания тока через открывшийся ключевой транзистор. Тогда при полном открывании транзистора ток через диод VD1 уменьшится почти до нуля. Этого можно достигнуть, если форма тока через ключевой транзистор будет близка к треугольной. Как показывает расчет, для получения такой формы тока индуктивность накопительного дросселя L1 не должна превышать 30 мкГн.

Еще один путь - применение более быстродействующего коммутационного диода (VD1), например, КД219Б. Это так называемый диод с барьером Шоттки. У таких диодов выше быстродействие и меньше падение напряжения при одном и том же значении тока по сравнению с обычным кремниевым высокочастотным. Конденсаторы С3-С7 - из серии К52-1.

Все перечисленные выше изменения не приводят к значительному изменению принципиальной схемы и печатной платы стабилизатора.

Улучшение параметров устройства может быть получено и при изменении режима работы ключевого транзистора. Особенность работы мощного транзистора VT3 в исходном и улучшенном стабилизаторах состоит в том, что он работает в активном режиме, а ненасыщенном, и поэтому имеет высокое значение коэффициента передачи тока и быстро закрывается. Однако из-за повышенного напряжения на нем, когда он открыт, рассеиваемая мощность в 1,5...2 раза превышает минимально достижимое значение.

Понизить напряжение на ключевом транзисторе можно подачей положительного относительно плюсового провода питания напряжения смещения на эмиттер транзистора VT2 (см. рис. 1). Значение напряжения смещения подбирают при налаживании стабилизатора. Если он питается от выпрямителя, подключенного к сетевому трансформатору, то для получения напряжения смещения можно предусмотреть отдельную обмотку на трансформаторе. Однако при этом напряжение смещения будет изменяться вместе с сетевым.

Для получения стабилизированного напряжения смещения стабилизатор надо доработать (рис. 4), а дроссель превратить в трансформатор Т1, намотав дополнительную обмотку II. Когда ключевой транзистор закрыт, а диод VD1 открыт, напряжение на обмотке 1 определяется из выражения: U1==Uвых+Uvd1. Поскольку напряжение на выходе и на диоде в это время меняется незначительно, то независимо от значения входного напряжения на обмотке II напряжение практически стабилизировано. После выпрямления его подают на эмиттер транзистора VT2.

Усовершенствование импульсного стабилизатора напряжения
Рис.4 (нажмите для увеличения)

Улучшение энергетических характеристик второго варианта доработанного стабилизатора иллюстрирует рис. 5, где для сравнения показаны аналогичные зависимости и первого варианта (сравните также с рис. 2,а в упомянутой выше статье). При этом потери на нагрев снизились в первом варианте доработанного стабилизатора на 14,7%, а во втором - на 24,2%, что позволяет им работать при токе нагрузки до 4 А без установки ключевого транзистора на теплоотвод.

Усовершенствование импульсного стабилизатора напряжения
Рис.5

В стабилизаторе варианта 1 дроссель L1 содержит 11 витков, намотанных жгутом из восьми проводников ПЭВ-1 0,35. Обмотку помещают в броневой магнитопровод Б22 из феррита 2000НМ. Между чашками нужно заложить прокладку из текстолита толщиной 0,25 мм. В стабилизаторе варианта 2 трансформатор Т1 образован намоткой поверх катушки дросселя L1 двух Витков провода ПЭВ-1 0.35. Вместо германиевого диода Д310 можно использовать кремниевый, например, КД212А или КД212Б, при этом число витков обмотки II нужно увеличить до трех.

Автор: А. Миронов г. Люберцы Московской обл.; Публикация: Н. Большаков, rf.atnn.ru

Смотрите другие статьи раздела Стабилизаторы напряжения.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Растения сигнализируют об опасности вулканической активности 17.06.2025

Извержения вулканов - одни из самых разрушительных природных явлений, и своевременное их предсказание является важной задачей для защиты жизни и имущества людей. Современные технологии позволяют отслеживать сейсмическую активность, тепловые аномалии и газовые выбросы, однако ученые из разных стран продолжают искать новые, более ранние признаки приближающейся опасности. Недавнее исследование команды под руководством вулканолога Николь Гвинн продемонстрировало необычный способ раннего обнаружения вулканической активности с помощью изменений в растительности вокруг вулкана Этна - одного из самых активных вулканов Европы. В ходе двухлетних наблюдений ученые выявили 16 случаев, когда увеличение содержания углекислого газа (CO2) в воздухе или почве совпадало с ростом показателя NDVI - нормализованного индекса растительности, отражающего интенсивность фотосинтеза и здоровье зеленых насаждений. Этот индекс широко используется для оценки густоты и жизнеспособности растительного покрова на сп ...>>

Магнит без использования полезных ископаемых 17.06.2025

Технологии все больше зависят от редких и дорогих материалов, добыча которых сопряжена с экологическими и геополитическими рисками. В связи с этим поиск альтернативных решений становится одной из важнейших задач науки и промышленности. Недавно американские ученые во главе с исследователем китайского происхождения Цзянь-Пин Ванг разработали магнит, изготовленный исключительно из железа и азота, который не содержит традиционных редкоземельных элементов. Это открытие может кардинально изменить подход к производству магнитных материалов и значительно снизить зависимость от нестабильных международных поставок. В отличие от широко используемых сегодня магнитов, содержащих редкие полезные ископаемые, такие как самарий и диспрозий, новый магнит отличается более простой и экологичной составной частью. По словам ученых, магнит, созданный из железа и азота, обладает силой магнитного поля, которая превосходит многие известные материалы на рынке. Это делает его перспективной заменой для постоянн ...>>

Скука полезна творческим людям 16.06.2025

Когда информационный поток непрерывно заполняет наше сознание, умение сделать паузу становится особенно важным. Именно в моменты кажущейся скуки мозг получает возможность перезагрузиться и активировать скрытые ресурсы, стимулирующие творческое мышление и саморефлексию. Ученые из Университета Саншайн-Кост в Австралии провели исследование, которое подтверждает, что короткие периоды скуки могут быть полезны для творческих людей и не только. Скука возникает в тот момент, когда способность человека удерживать внимание начинает снижаться, и активируется так называемая сеть пассивного режима мозга. Эта система отвечает за внутренние мысли и саморефлексию, в то время как активность исполнительной сети, которая обычно помогает сосредоточиться, заметно снижается. Таким образом, скука становится не просто неприятным ощущением, а своего рода переключателем, дающим мозгу возможность отдохнуть от постоянной концентрации. Современный ритм жизни сопровождается постоянной стимуляцией симпатическо ...>>

Случайная новость из Архива

Искусственный ледник против глобального потепления 03.05.2017

Американские ученые предложили бороться с глобальным потеплением путем выращивания искусственных ледников и таким образом остановить негативные тенденции в окружающей среде.

При строительстве рукотворного ледника будет применяться искусственный снег. По словам ученых, чтобы защитить искусственную глыбу от воздействия солнечных лучей, понадобиться слой в несколько сантиметров такого снега. Ледник, предположительно, вырастет в течение 20 лет и будет достигать в высоту порядка 800 метров.

В случае успешной реализации данного проекта, подобные ледники планируют выращивать по всему миру. В тоже время радужные мечты американских ученых не разделяют некоторые экономисты, которые считают, что проект обойдется в баснословную сумму. Но видимо такую плату предстоит сделать человечеству за изменение климата на Земле.

Другие интересные новости:

▪ Африканская рыба не выносит жары

▪ Альтернативная энергетика для космической станции

▪ Модули памяти VLP RDIMM DDR4 64 ГБ от Virtium

▪ Космический инкубатор

▪ Удобрения и рыба

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Защита электроаппаратуры. Подборка статей

▪ статья Казеиновый клей. Советы домашнему мастеру

▪ статья Как красноармеец Дмитрий Овчаренко сумел победить отряд немцев из 50 человек? Подробный ответ

▪ статья Мексиканский огурец. Легенды, выращивание, способы применения

▪ статья Монтаж и демонтаж элементов. Энциклопедия радиоэлектроники и электротехники

▪ статья Микросхема TDA8362 в 3УСЦТ и других телевизорах. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025