Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Особенности тринисторных регуляторов. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Регуляторы тока, напряжения, мощности

Комментарии к статье Комментарии к статье

Многие радиолюбители в процессе эксплуатации самодельных или приобретенных в магазине тринисторных регуляторов обнаружили, что иногда эти регуляторы работают нечетко, а используемые совместно с ними низковольтные осветительные приборы быстро выходят из строя. Об особенностях работы тринисторного регулятора мощности переменного тока, приводящих к подобным явлениям, и некоторых возможных путях повышения надежности работы устройств с такими регуляторами, рассказывает эта статья.

Журнал "Радио" уделяет много внимания тринисторным регуляторам мощности переменного тока (см., например, подборку статей "Тиристорные регуляторы напряжения" .- "Радио", 1975, № 10, с. 47-49). Эти устройства, ставшие в последние годы очень популярными, позволяют изменять действующее значение напряжения на нагрузке от нескольких вольт почти до напряжения питающей сети. Казалось бы. с помощью такого регулятора можно питать от сети самые различные низковольтные устройства. Так ли это?

Чтобы ответить на этот вопрос, рассмотрим кратко работу двухполупериодного тринисторного регулятора мощности, одна из наиболее типичных схем которого показана на рис. 1 (она заимствована с незначительными изменениями из вышеупомянутого источника). Напряжение на нагрузке такого регулятора по форме представляет собой усеченную синусоиду. Например. при углах включения тринистора V5, превышающих 90°, это напряжение имеет вид, условно показанный на рис. 2 сплошной линией. Максимальный угол включения тринистора в рассматриваемом регуляторе равен 172°. Вольтметр магнитоэлектрической системы, подключенный к нагрузке R11, (рис. 1). показывает при этом напряжение 6 В.

Особенности тринисторных регуляторов
Рис.1

Амплитудное значение напряжения на нагрузке Un.vf[ при таком угле включения нетрудно определить:

Uн.max=Umax*sin (180°- 172°)=220*1.41* 0,139=43В.

где Umax - амплитудное значение напряжения питающей сети.

Измерение напряжения Uн.max с помощью электронного осциллоскопа дает такой же результат. Вероятно. не каждая нагрузка, рассчитанная ни номинальное напряжение 6 В, может длительно выдерживать такие значительные, хотя и кратковременные. периодические перенапряжении. Например, нить обычной лампы накаливания МН-38 (на напряжение 6,3 В. потребляемый ток 0,22 А) при питании напряжением такой формы часто перегорает уже через несколько секунд.

Рассмотренный факт не является единственной причиной, ограничиваюшей возможность применения тринисторного регулятора для питания низковольтной нагрузки. Вторая причина заключается в том, что при любом установленном резистором R5 (см. схему) угле включения тринистора напряжение на нагрузке может на короткое время стать равным полному номинальному напряжению питающей сети. Явление это было обнаружено с помощью электронного осциллоскопа в моменты отключения регулятора от питающей сети. Выключателем при этом служила обычная штепсельная вилка. Объяснить это явление можно следующим образом.

Из-за неровностей на поверхности штырей штепсельной вилки отключение регулятора от сети происходит в большинстве случаев не мгновенно, а сопровождается чередующимися размыканиями и замыканиями питающей цепи (как при "дребезге контактов"). При первом же размыкании цепи напряжение на базе транзистора V7 становится равным нулю и аналог однопереходного транзистора V7V8 открывается. Конденсатор С1 разряжается и через управляющий переход тринистора V'5 протекает импульс открывающего тока. Если теперь питающая цепь вновь окажется замкнутой, то полное напряжение сети через открывшийся триннстор окажется приложенным к нагрузке до окончании полупериода.

Во время экспериментов с рассматриваемым регулятором лампы накаливания. например, рассчитанные на номинальное напряжение 36 В. перегорали обычно уже при первом-втором выключении регулятора, несмотря на то что резистором R5 был установлен максимальный угол включения тринистора и в установившемся режиме лампы светились сколь угодно долго. Наблюдения с помощью осциллоскопа за процессом размыкания контактов в выключателях T1, T2, ТП2-1 и других показали, что это размыкание происходит в них практически без "дребезга". При использовании таких выключателей в регуляторе лампы накаливания при тех же условиях не перегорали даже при многократном повторении цикла включение-выключение. Это подтверждает правильность предположения о причинах обнаруженного явления.

Есть ли какой-либо способ исключить возможность появления чрезмерного напряжения на низковольтной нагрузке даже при наличии "дребезга" контактов выключателя S1?

Вероятно, можно найти целый ряд таких способов. Один из них, например, состоит в применении дополнительного выключателя, установленного в точке А (см. схему). Сначала следует включить выключатель SI. а затем уже замыкать цепь в точке А. Отключать регулятор нужно в обратном порядке. Способ этот был проверен на практике и показал хорошие результаты. Его эффективность также является подтверждением правильности предположения о причинах рассмотренного явления.


Рис.2

Следует заметить, однако, что даже применение в регуляторах дополнительных выключателей не устраняет полностью описанного выше недостатка. Действительно, причиной "дребезга" может стать и недостаточно плотный контакт вилки в розетке и кратковременные пропадания напряжения в питающей сети.

Кроме того, необходимо добавить, что указанное явление было воспроизведено на регуляторе, схема которого изображена на рис. 1. Другие регуляторы могут иметь и иные особенности, но, вероятно, во всех случаях описанное явление будет связано с работой узла управления ключевым элементом,

Иногда приходится слышать мнение, что описанные случаи выхода из строя низковольтных ламп накаливания, питающихся от тринисторного регулятора. обусловлены самопроизвольным включением тринистора за счет большой скорости нарастания анодного напряжения dU/dt при подключении регулятора к сети, если, например, это происходит в момент времени, когда напряжение сети близко к максимальному. С таким утверждением нельзя согласиться. Для наиболее распространенных в радиолюбительской практике тринисторов серий КУ201 и КУ202 скорость нарастания анодного напряжения не нормирована. Это означает, что названные тринисторы допускают практически любую скорость нарастания анодного напряжения, если только его амплитудное значение не превышает допустимого максимального прямого напряжения на закрытом тринисторе (Uпр.зкр.max).

И, следовательно, исправный тринистор, КУ202Н, например, при отсутствии тока в цепи управляющего электрода не должен открываться при подключении его к сети переменного тока напряжением 220 В, в какой бы момент периода такое подключение не происходило. Это легко проверить, например. собрав простое устройство по схеме, показанной на рис. 3. Низковольтная лампа накаливания H1 не будет светиться и останется неповрежденной после любого числа включении выключателем SI (если исправен тринистор V1, разумеется).

Особенности тринисторных регуляторов
Рис.3

Все сказанное выше позволяет сделать некоторые выводы. Во-первых, форма выходного напряжения тринисторных регуляторов, работающих от сети переменного тока, является фактором, ограничивающим возможность питания от таких регуляторов низковольтных нагрузок. Во-вторых, в тринисторных регуляторах не исключена возможность появления на нагрузке импульсов напряжения, соответствующих малым углам включения тринисторов, даже если элементами времязадающей цени угол включения тринистора установлен максимальным.

Сделанные выводы приводят к заключению о том, что надежная работа устройства с тринисторным регулятором мощности может быть гарантирована только в том случае, когда напряжение питающей сети не превышает номинального напряжения питания нагрузки, т. е. когда тринисторный регулятор используется только для уменьшения напряжения на нагрузке.

Автор: В. Черный, г. Москва; Публикация: Н. Большаков, rf.atnn.ru

Смотрите другие статьи раздела Регуляторы тока, напряжения, мощности.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Польза белкового завтрака 14.01.2026

Правильное питание по утрам играет ключевую роль в поддержании здоровья и контроле веса. Многочисленные исследования подтверждают, что состав завтрака может влиять на аппетит в течение всего дня и качество употребляемой пищи. Австралийские ученые провели масштабный эксперимент, который показал, что употребление белковой пищи с утра помогает дольше чувствовать сытость и предотвращает переедание. В исследовании участвовали более 9 тысяч человек среднего возраста 46 лет. В период с 2011 по 2012 год специалисты анализировали рационы респондентов, оценивая долю основных макронутриентов. В среднем участники потребляли 43% углеводов, 31% жиров, 18% белков, 2% клетчатки и 4% алкоголя. Такой рацион позволил ученым проследить взаимосвязь между утренним приемом пищи и пищевым поведением в течение дня. Выяснилось, что участники, чей завтрак содержал недостаточное количество белка, ощущали повышенный аппетит в течение дня. Они ели больше, чем необходимо, и часто выбирали продукты с высоким со ...>>

Технология SmartPower HDR 14.01.2026

Ноутбуки стремительно развиваются в плане графики и мультимедийных возможностей, но яркие дисплеи с высоким динамическим диапазоном (HDR) часто становятся серьезной нагрузкой для аккумуляторов. Длительная работа с видео высокого качества или играми в HDR приводит к быстрой разрядке батареи, что ограничивает мобильность пользователей и снижает комфорт работы. Решить эту проблему призвана новая технология SmartPower HDR, разработанная совместно компаниями Samsung Display и Intel. Суть технологии заключается в динамическом управлении напряжением OLED-панелей. Чипсет ноутбука в реальном времени анализирует пиковую яркость каждого кадра и передает эти данные контроллеру дисплея, который оптимизирует подачу напряжения в зависимости от количества активных пикселей. В отличие от традиционных режимов HDR, где яркость часто фиксируется на максимальном уровне, SmartPower HDR адаптируется к конкретному контенту, что снижает энергопотребление без потери качества изображения. Технология позвол ...>>

Недосып существенно сокращает жизнь 13.01.2026

Сон является одной из самых фундаментальных потребностей человека. Он влияет на обмен веществ, работу сердца и мозга, иммунитет и общее самочувствие. Современный ритм жизни часто заставляет людей жертвовать сном ради работы, учебы или развлечений, но ученые предупреждают: регулярный недосып может иметь далеко идущие последствия для здоровья и долголетия. Исследователи из Орегонского университета здравоохранения и науки пришли к выводу, что сон менее семи часов в сутки связан с сокращением продолжительности жизни. По данным специалистов, хроническая нехватка сна не только вызывает усталость и снижение работоспособности, но и постепенно сказывается на здоровье органов и систем, увеличивая риски развития различных заболеваний. Для анализа ученые использовали обширную национальную базу данных США, сопоставляя показатели ожидаемой продолжительности жизни на уровне штатов с результатами опросов Центров контроля и профилактики заболеваний за период с 2019 по 2025 годы. Они учитывали мно ...>>

Случайная новость из Архива

Бионический робот-кенгуру 10.04.2014

Робот BionicKangaroo, созданный немецкой компанией Festo, представляет собой механизм высотой 1 м (в положении стоя) и массой около 7 кг. В числе его выдающихся способностей значится возможность выполнить прыжок вверх на 40 см и оттолкнуться в длину на 80 см.

Взять за основу именно кенгуру немецкие инженеры решили по нескольким причинам. Прежде всего, благодаря конструкции, основа которой была позаимствована от строения тела настоящего кенгуру, робот способен преобразовывать кинетическую энергию одного прыжка в другой. Для этого используются специальные пружины, представляющие собой механический аналог эластичного ахиллового сухожилия. Каждое приземление и последующее сжатие пружин действует подобно рекуперативной системе торможения в автомобилях, что дает возможность использовать полученную при приземлении энергию для последующего толчка.

Идея создания роботизированного механизма, который копировал бы повадки животных, вовсю применяется и другими компаниями. Стоит вспомнить проект робота-гепарда Cheetah, созданного небезызвестной в области робототехники фирмой Boston Dynamics. Модель механического представителя семейства кошачьих не только достигла рекордных показателей скорости на испытательном стенде, составившей 45,5 км/ч, но и была модернизирована в автономную версию без кабелей питания. Бензиновая модификация, получившая наименование WildCat, была успешно опробована в полевых условиях, хотя и не смогла добиться таких же скоростных показателей.

Питание робота-кенгуру компании Festo происходит при помощи небольших пневматических компрессоров. Управление электронными системами осуществляется благодаря встроенной в роботизированную конструкцию аккумуляторной батареи. Упрощенная модель перемещения устройства выглядит следующим образом: в первоначальной позиции "железный кенгуру" опирается на две конечности, которым придает дополнительную устойчивость механический хвост в качестве третьей точки опоры. Когда необходимо совершить прыжок, в дело вступают пружины, работа которых зависит от подачи сжатого воздуха. Далее работу выполняют небольшие двигатели на бедрах животного и робот наклоняется вперед для последующего прыжка. Как только достигается необходимый угол для совершения толчка, накопленная энергия освобождается, превращаясь в механическое движение.

Все части тела механического животного участвуют в его передвижении. Хвост "животного" выступает не только в роли дополнительной опоры в состоянии покоя, но и берет на себя функцию баланса механизированной конструкции в горизонтальной плоскости. В результате каждый последующий прыжок BionicKangaroo основывается на энергии, которую получает робот при приземлении за счет эластичности своей конструкции.

Список уникальных технологических решений на этом вовсе не заканчивается. Кенгуру получил управление при помощи жестов, которое можно осуществлять благодаря Bluetooth-браслету Thalmic Labs Myo, работающему на расстоянии до 50 м. Оператору стоит всего лишь показать рукой необходимую команду и робот беспрекословно выполнит его, примчавшись к обладателю гаджета.

Другие интересные новости:

▪ Атомный захват

▪ Оживление мамонтов

▪ Чип Snapdragon 820 для скорости 600 Мбит/с

▪ Смартфон, обеспечивающий бесплатную безлимитную связь

▪ Бронежилет с системой охлаждения

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Устройства защитного отключения. Подборка статей

▪ статья Халява. Крылатое выражение

▪ статья Какой напиток самый распространенный в мире? Подробный ответ

▪ статья Цетрария исландская. Легенды, выращивание, способы применения

▪ статья Электронная игра на микроконтроллере Светодиодные наперстки. Энциклопедия радиоэлектроники и электротехники

▪ статья Нормы испытаний электрооборудования и аппаратов электроустановок потребителей. Конденсаторы. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:




Комментарии к статье:

Dumov
Прочитал с большим удовольствием. [up] Было бы интересно узнать Ваше мнение о симисторном регуляторе для индуктивной нагрузки.


Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2026