Бесплатная техническая библиотека
Простой метроном. Энциклопедия радиоэлектроники и электротехники
Энциклопедия радиоэлектроники и электротехники / Музыканту
Комментарии к статье
Всем, кто учится играть на музыкальных инструментах, окажет помощь простой электронный метроном. Изготовить его под силу любому начинающему радиолюбителю.
Удивительно, но на все музыкальное училище, в котором учится моя дочь, имелся лишь один электронный метроном невероятно больших габаритов. Да и воспользоваться им могли лишь немногие, поскольку он был постоянно "на руках".
В подобной ситуации предоставляется удобный случай изготовить предлагаемый метроном и сделать приятный, а главное, полезный подарок хорошему знакомому или родственнику, который решил посвятить себя музыке.
Метроном питается от сети напряжением 220 В и потребляет ток в несколько миллиампер. Громкость его щелчков достаточна даже при игре на таком "громком" музыкальном инструменте, как скрипка. Частота щелчков метронома устанавливается музыкантом самостоятельно, "на слух" (на то ему этот самый музыкальный слух и дан!).
Основа прибора - обычный релаксационный RC-генератор на динисторе VS1 (рис. 1,а).
Положительные полуволны сетевого напряжения, пропускаемые выпрямительным диодом VD1, заряжают времязадающий конденсатор С1 через резисторы R1, R2 и диод VD2. Продолжительность зарядки конденсатора изменяется переменным резистором R2. Когда напряжение на конденсаторе достигнет определенного значения, откроется динистор. Конденсатор быстро разрядится через динистор и нагрузку - головной телефон BF1. В результате в телефоне раздастся щелчок, громкость которого зависит от положения движка переменного резистора R3.
После уменьшения тока разрядки конденсатора до тока удержания динистора он закроется, процесс начнет повторяться.
Поскольку нагрузка носит индуктивный характер, при верхнем по схеме положении движка регулятора громкости R3, когда напряжение на конденсаторе окажется равным нулю, он начнет перезаряжаться. Поэтому положение движка регулятора громкости скажется на значении остаточного напряжения на конденсаторе, а значит, на частоте щелчков метронома. Для устранения этого недостатка установлен диод VD2, который исключает перезарядку конденсатора при любом положении движка резистора R3.
Из-за того, что в устройстве применен однополупериодный выпрямитель без конденсатора фильтра, напряжение на конденсаторе С1 в процессе зарядки нарастает ступеньками. При этом динистор открывается в те короткие промежутки времени, когда напряжение в положительный полупериод нарастает. Это обеспечивает синхронизацию частоты метронома частотой сети 50 Гц, в результате чего достигается хорошая стабильность заданной частоты щелчков метронома.
Вместо динистора КН102Г допустимо применить КН102В либо собрать аналог динистора на базе тринистора (рис. 1,б). Подойдет любой тринистор с током включения не более 0,1 мА и максимальным током анода не менее 200 мА. Подбором резистора R5 устанавливают напряжение включения аналога. Конденсатор С1 - К73-16, переменные резисторы - СП-0,4 или другие подходящих габаритов, остальные резисторы - МЛТ указанной на схеме мощности. Нагрузка BF1 - низкоомный капсюль ТА-56м, но подойдет любой другой сопротивлением 40...150 Ом.
Детали метронома можно собрать в корпусе от сетевого адаптера (рис. 2) или самому изготовить пластмассовый корпус и вклеить в него сетевую вилку. Ручки регуляторов частоты и громкости звука должны быть из изоляционного материала и полностью закрывать металлические части переменных резисторов.
Капсюль, если позволяют размеры корпуса, размещают внутри, в противном случае капсюль приклеивают снаружи. Монтаж деталей - навесной. При правильно выполненном монтаже и использовании исправного динистора метроном не нуждается в налаживании. Детали в корпусе закрепляют несколькими каплями эпоксидного клея.
Автор: Е.Коновалов, г.Мариуполь, Украина
Смотрите другие статьи раздела Музыканту.
Читайте и пишите полезные комментарии к этой статье.
<< Назад
Последние новости науки и техники, новинки электроники:
Особенности почек помогают легче переносить высоту
18.01.2025
Высокогорные регионы всегда привлекали внимание исследователей, изучающих, как человек адаптируется к жизни в условиях разреженного воздуха. Недавнее исследование группы ученых из Университета Маунт-Ройал в Канаде, возглавляемое доктором Тревором Деем, проливает свет на важную роль почек в акклиматизации к большим высотам. Работы канадских ученых объясняют, почему представители народности шерпа, которые веками живут в высокогорных районах Тибета, значительно лучше переносят высокогорье.
В своем исследовании ученые наблюдали за дыханием и составом крови участников во время их подъема на высоту 4300 метров в Гималаях, в Непале. Эксперимент проводился с участием двух групп: одна состояла из жителей низменностей, не привыкших к горной среде, а другая - из шерпов, чей организм приспособлен к жизни на большой высоте.
Основное различие между этими группами было в том, как их организмы реагировали на дефицит кислорода в воздухе. У шерпов наблюдалась более быстрая и масштабная адаптация к ...>>
Производство электричества с помощью термоядерного синтеза
18.01.2025
Американская компания Commonwealth Fusion Systems (CFS) нацелена на создание первой в мире термоядерной электростанции, способной подключаться к электрической сети.
Этот амбициозный проект, известный как ARC (Affordable, Robust, Compact), будет построен вблизи города Ричмонд, штат Вирджиния. В соответствии с планами, новая электростанция сможет производить до 400 мегаватт чистой энергии, что вполне хватит для обеспечения электричеством 150 тысяч домохозяйств. Прогнозируется, что станция начнет работу в 2030-х годах.
Принцип работы термоядерной электростанции основан на процессе термоядерного синтеза, который происходит в ядре звезд. В отличие от традиционной атомной энергетики, где используется деление ядер атомов с образованием радиоактивных отходов, термоядерный синтез создает в качестве побочного продукта безопасный гелий. Для того чтобы удерживать плазму с температурой свыше 100 миллионов градусов Цельсия, установка будет использовать мощные магнитные поля.
Тем не менее, н ...>>
Экологическая защита для овощей и фруктов
17.01.2025
Исследователи из женского колледжа Шри Нараяна в Колламе, Керала, Индия, разработали инновационный способ продления свежести фруктов и овощей. Группа под руководством Пурнимы Виджаян предложила использовать съедобное покрытие, созданное на основе целлюлозных нановолокон (CNF), полученных из луковой шелухи. Этот подход не только продлевает срок хранения продуктов, но и способствует их безопасности благодаря включению нанокуркумина, известного своими антимикробными свойствами.
Основным компонентом покрытия являются CNF, полученные из переработанных отходов лука. Эти нановолокна соединяются с синтетическим биополимером, который улучшает структуру покрытия, устраняя проблемы с водостойкостью и термической стабильностью, ранее свойственные материалам на основе CNF. Кроме того, добавление нанокуркумина усиливает антимикробные свойства покрытия, делая его особенно эффективным для предотвращения порчи.
Для проверки эффективности этой разработки ученые провели эксперимент с апельсинами. П ...>>
Случайная новость из Архива Зарядка имплантов с помощью ультразвука
23.04.2022
Разного рода электроника уже давно вживляется в организм людей. Типичный пример - кардиостимулятор. Но когда его аккумулятор разряжается, необходима хирургическая замена импланта. Корейские ученые нашли способ решить эту проблему с помощью дистанционной ультразвуковой зарядки.
Хотя в мире электроники существует немало технологий беспроводной зарядки, самые актуальные из них не подходят для медицинского применения. Так, электромагнитная индукция позволяет заряжать АКБ смартфонов, расположенных на расстоянии до 1,5 см от специальной панели, причем в процессе выделяется довольно много тепла, что недопустимо в случае, когда аккумулятор скрыт в тканях живого организма. Еще одним методом является зарядка с использованием магнитного резонанса, но на оборудование в этом случае могут повлиять источники беспроводных сигналов вроде Bluetooth или Wi-Fi.
С учетом этих и прочих ограничений команда ученых из Корейского института науки и технологий (KIST) разработала вживляемый генератор, который можно интегрировать как в кардиостимулятор, так и в другой имплант. Он использует "трибоэлектрический эффект", в результате которого материалы создают электрический заряд при трении друг о друга. В разработанной конструкции источником колебаний для трения станет ультразвук.
В лабораторных условиях генератор смог обеспечивать энергию мощностью 8 мВт даже в случае, когда сам генератор и источник ультразвука находились под водой на расстоянии до 6 см. Считается, что такой энергии достаточно для питания 200 LED-элементов или передачи Bluetooth-сигнала под водой. Ученые отметили, что это в теории позволит использовать технологию и в разработках для подводной электроники.
Для более реалистичной имитации человеческого тела генератор размещали в свиной туше. По мнению ученых, в будущем технология будет усовершенствована и станет применяться во вживляемых или глубоководных сенсорах - в таких случаях перезарядка аккумуляторов весьма проблематична.
|
Другие интересные новости:
▪ Спортивные рекорды окончатся в 2027 году
▪ В океане проводят перепись населения
▪ Два новых индуктора от Vishay
▪ Созданы самые точные весы в мире
▪ Скутер на зеленом водороде
Лента новостей науки и техники, новинок электроники
Интересные материалы Бесплатной технической библиотеки:
▪ раздел сайта Сборка кубика Рубика. Подборка статей
▪ статья Философия науки и техники. Конспект лекций
▪ статья Почему корова дает молоко? Подробный ответ
▪ статья Бутень Прескотта. Легенды, выращивание, способы применения
▪ статья Электронный уничтожитель насекомых. Энциклопедия радиоэлектроники и электротехники
▪ статья Воздушные линии электропередачи напряжением до 1 кВ. Заземление. Защита от перенапряжений. Энциклопедия радиоэлектроники и электротехники
Оставьте свой комментарий к этой статье:
Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте
www.diagram.com.ua
2000-2025