Menu English Ukrainian Russian Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Пускозащитное устройство для галогенных ламп на микроконтроллере Z8. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Микроконтроллеры

Комментарии к статье Комментарии к статье

В последнее время для освещения дачных участков и индивидуальных загородных домов все чаще используют галогенные прожекторы и светильники. Однако в нашем климате срок службы ламп в этих приборах невелик. Связано это, прежде всего, с броском пускового тока, разрушающего холодную нить накала лампы при ее включении.

Для устранения этого броска разработано так называемое пускозащитное устройство (ПУ), которое обеспечивает плавное включение любых ламп накаливания, в том числе галогенных. Кроме того, прибор способен плавно выключать нагрузку и понижать напряжение на ней примерно на 10 % от номинального напряжения сети, что увеличивает ресурс ламп при подключении их к сети с напряжением более 220 В.

Основные характеристики ПУ следующие: напряжение питания - 220 В ±20%; время включения (выключения) 10с; потребляемый ток - не более 40 мА. Максимальное значение тока нагрузки и предельное значение коммутируемой мощности определяются используемым симистором и его теплоотводом.

Принципиальная схема ПУ изображена на рис. 2.

Пускозащитное устройство для галогенных ламп на микроконтроллере Z8
(нажмите для увеличения)

Его основа - тот же микроконтроллер Z86E0208PSC (DD1), "прошитый" кодами из табл. 3, которые обеспечивают требуемый алгоритм включения и выключения нагрузки. Тактовую частоту DD1 задает цепь, состоящая из кварцевого резонатора Q1 и конденсаторов С4, С5 емкостью 22...33 пф.

Пускозащитное устройство для галогенных ламп на микроконтроллере Z8
(нажмите для увеличения)

Питается устройство от бестрансформаторного источника, отличающегося от аналогичного узла прибора "Кросс" применением двухполупериодного выпрямителя VD1, что позволило уменьшить емкость "гасящего" конденсатора C3.

Управление цепью нагрузки осуществляется парой компонентов, состоящей из силового симистора VS1 и оптрона U1. Светодиод HL1 зажигается и гаснет синхронно с нагрузкой, индицируя правильность отработки алгоритма (если индикация не нужна, его заменяют перемычкой, а вместо R5 сопротивлением 240 Ом устанавливают резистор сопротивлением 360 Ом).

В качестве U1 применен симисторный оптрон с произвольным моментом переключения, что обеспечивает возможность плавного изменения яркости свечения нагрузки. Допустимо использование любых аналогов оптопар МОC3023 фирмы Motorola (МОC3022, МОC3052. МОC3053 и т. п.), приборов без контроля прохождения сигнала через ноль более высоких классов. С этой же целью в ПУ реализован специальный аппаратно-программный механизм синхронизации работы программы прибора с времячастотными характеристиками сети. Узел синхронизации собран на транзисторе VT1. Число элементов этой цепи можно уменьшить, если выполнить ее аналогично подобному узлу контроллера "Кросс-хамелеон"' (т. е. оставить резистор R3 номиналом 2 МОм. защитный диод VD3, включить перемычку, соединяющую контактные площадки под выводы базы и коллектора VT1, и добавить диод, выполняющий функции, аналогичные диоду VD4 на рис. 1).

Выходной каскад ПУ не пропускает на нагрузку первую полуволну переменного напряжения при включении устройства в сеть. С этой целью в цепь управления симистора VS1 включена цепь R12C9R13.

Местное плавное включение/выключение нагрузки и управление снижением выходной мощности осуществляется через контакты 5 ("Вкл./Выкл.)" и 7 ("Ограничение 10%") разъема X1 (через них передаются команды на отработку или запрещение отработки микроконтроллером DD1 соответствующих алгоритмов). Чтобы задать команду выключения, с общим проводом прибора (контакт 6) соединяют (внешним выключателем SA1) контакт 5, а команду ограничения выходной мощности (внешней перемычкой) - контакт 7. Наличие этих соединений определяется контроллером только в момент включения устройства в сеть. Обе цепи снабжены диодно-емкостной защитой (VD5C7 и VD6C8). исключающей прохождение к микроконтроллеру импульсных помех. Однако длина проводов, соединяющих ПУ с выключателем, ограничена и не должна превышать 3...5 м. При невыполнении этого требования возможны сбои микроконтроллера из-за наведенных на проводах помех.

В качестве выключателя SA1. используемого для местного управления работой ПУ, подойдет обычный сетевой выключатель или тумблер с фиксацией положений. Если его контакты размыкаются, ПУ постепенно повышает мощность на нагрузке в течение 10 с, а если замыкаются. - отрабатывает алгоритм ее плавного снижения в течение такого же времени. В отсутствие цепи местного управления обеспечивается только плавное включение нагрузки (при отключении прибора выходное напряжение снижается скачком).

Для управления работой ПУ с большого расстояния используют узел, собранный на оптроне U2 (в этом случае выводы 2 и 9 микроконтроллера DD1 соединяют перемычкой). При обесточенной входной цепи ПУ работает в обычном режиме (работа прибора разрешена). Подача на вход (контакты 8 и 9 разъема X1) сетевого напряжения приводит к появлению тока через конденсатор С11 и зажиганию светодиода оптрона. Соединенные перемычкой выводы 2 и 9 микроконтроллера DD1 оказываются подключенными к его выводу GND. В результате микроконтроллер прекращает отработку алгоритмов переключения (работа прибора запрещена), плавно снижая напряжение на нагрузке. Несмотря на то, что прибор остается под напряжением, процессор в этом случае заблокирован сигналом дистанционного управления.

Для дистанционного управления служит обычный сетевой выключатель. Им можно коммутировать несколько ПУ. включенных параллельно и расположенных на значительном расстоянии один от другого.

Уменьшение действующего значения выходного напряжения на нагрузке на 10% по отношению к действующему значению напряжения сети достигается изменением формы выходного сигнала (обрезанием синусоиды). Прибор не содержит никаких специальных устройств контроля напряжения сети или напряжения на нагрузке, просто микроконтроллер понижает выходное напряжение на 10% относительно напряжения сети. По этой причине не рекомендуется использовать такой режим в сетях с сильно заниженным действующим значением напряжения. Следует помнить, что при напряжении ниже 150...180 В колбы большинства современных галогенных ламп не могут разогреться до температуры, необходимой для возникновения галогенного эффекта, поэтому они быстро выходят из строя.

Поскольку выходное напряжение в режиме ограничения имеет не синусоидальную форму, для точного измерения его действующего значения используют приборы, позволяющие контролировать сигналы произвольной формы.

В качестве C3, С9, С11 рекомендуются конденсаторы К73-17, остальные детали - любые малогабаритные.

Значение тока, коммутируемого симистором VS1, зависит от теплоотвода. Так, если для охлаждения применена пластина размерами 40> 90 мм из листового алюминиевого сплава толщиной 3 мм, к ПУ можно подключать нагрузку мощностью до 500 Вт. С пластиной из этого же материала, но размерами 60x90 мм, симистор может работать на нагрузку мощностью до 1 кВт. При этом ПУ вместе с теплоотводом симистора свободно размещается в футляре для пяти трехдюймовых дискет (габариты - 110x110x20 мм).

С помощью описываемого ПУ можно плавно включать и более мощную нагрузку, если вместо указанного на схеме использовать симистор, способный коммутировать более высокие значения тока нагрузки (например. ТС 112-16. ТС 122-25. ТС 132-40 с теплоотводами 0111, 0221, 0231 соответственно). Поскольку ток управления этих приборов значительно больше, необходимо, во-первых, изменить параметры цепи R12C9R13 (сопротивление резистора R13 уменьшить до 1,2 кОм. а емкость конденсатора С9 увеличить до 0,22 мкФ). А во-вторых, перепаять перемычку S1 с контактов 2-3 на 1 -2 с тем, чтобы вместо установленного на плате VS1 использовать внешний симистор VS2. Последний монтируют на теплоотводе и соединяют с платой короткими проводами. Конечно, для подобной конструкции нужен более просторный корпус.

Авторы: А.Ольховский, С.Щеглов, А.Матевосов, К.Чернявский, г.Москва

Смотрите другие статьи раздела Микроконтроллеры.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Использование Apple Vision Pro во время операций 16.03.2024

Медицинская команда больницы Кромвеля в Лондоне впервые применила Apple Vision Pro в ходе двух операций на позвоночнике. Это событие подтверждает потенциал гарнитуры в качестве медицинского инструмента, изменяющего подход к хирургической практике. Хотя сами врачи не использовали Vision Pro, операционная медсестра работала с виртуальной реальностью, используя очки во время подготовки и выполнения процедур. Гарнитура позволила просматривать виртуальные экраны в операционной, выбирать инструменты и следить за ходом операции. Программное обеспечение, разработанное компанией eXeX, специализирующейся на создании приложений на основе искусственного интеллекта для хирургии, существенно улучшило процесс оказания медицинской помощи пациентам. Использование Apple Vision Pro открывает новые возможности для разработки приложений в сфере здравоохранения, таких как клиническое образование, планирование операций, обучение и медицинская визуализация. Внедрение Apple Vision Pro в медицинскую пр ...>>

Хранение углерода в Северное море 16.03.2024

Министр энергетики Норвегии Терье Осланд объявил о запуске проекта Longship, нацеленного на создание центрального хранилища углекислого газа в Северном море. Этот амбициозный проект оценивается в $2,6 млрд и направлен на применение технологии CCS (углеродного захвата и хранения) для смягчения воздействия климатических изменений. Норвегия уже имеет опыт в области CCS благодаря успешным проектам Sleipner и Snohvit, и сейчас стремится увеличить объем углерода, запечатываемого под морским дном. План Longship предусматривает создание мощности по захвату и хранению 1,5 млн. тонн углерода ежегодно в течение 25 лет. Несмотря на позитивные перспективы, существуют опасения по поводу долгосрочных последствий такого хранения. Однако сторонники проекта утверждают, что морское хранение углерода имеет ряд преимуществ, включая минимальное воздействие на окружающую среду. Проект Longship осуществляется при участии компаний Equinor, Shell и TotalEnergies через совместное предприятие Northern Li ...>>

Выращены мини-органы из амниотической жидкости человека 15.03.2024

Международная команда ученых под руководством профессора Фань Сюлиня из Университета Чжэцзян разработала уникальный способ выращивания мини-органов из клеток, обнаруженных в амниотической жидкости человека. Этот значительный прорыв в медицине может привести к улучшению диагностики и лечения врожденных заболеваний. Органоиды, представляющие собой трехмерные клеточные структуры, имитирующие органы в меньшем масштабе, были выращены из клеток легких, почек и тонкого кишечника, найденных в амниотической жидкости. Этот метод открывает новые возможности для изучения различных состояний плода и может стать ключом к ранней диагностике и лечению врожденных дефектов. Хотя пока не проводились попытки использования этого метода в лечении, ученые надеются, что их исследования в будущем помогут бороться с серьезными врожденными заболеваниями, которые затрагивают миллионы новорожденных ежегодно. Этот прорыв может изменить практику медицинских вмешательств, позволяя диагностировать и лечить врожд ...>>

Случайная новость из Архива

PIC16CR - новые микроконтроллеры MICROCHIP TECHNOLOGY 23.03.2006

Новые микроконтроллеры PIC16CR от MICROCHIP TECHNOLOGY обеспечивают бесшовное переключение между постоянной памятью ROM и памятью флэш.

Микроконтроллеры PIC16CR73, PIC16CR74, PIC16CR76, PIC16CR77 являются первыми в этом семействе и могут заменить популярные PIC16F73, PIC16F74, PIC16F76 и PIC16F77. Предполагается, что такая замена придаст большую гибкость продукции компании.

Другие интересные новости:

▪ Эффективность разделенного лазерного луча повышается

▪ 4K-проектор JVC DLA-Z1

▪ Беспроводная мышь Logitech MX Anywhere 3

▪ На 3D-принтере напечатали растягивающуюся искусственную кожу

▪ Все золото мира

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Применение микросхем. Подборка статей

▪ статья Экологические опасности. Основы безопасной жизнедеятельности

▪ статья Чем питаются рыбы? Подробный ответ

▪ статья Работа с абразивным и эльборовым инструментом. Типовая инструкция по охране труда

▪ статья Устройство для обнаружения движущихся металлических предметов. Энциклопедия радиоэлектроники и электротехники

▪ статья Генератор на две частоты. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





All languages of this page

Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2024