Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Простые часы-будильник на PIC16F84. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Часы, таймеры, реле, коммутаторы нагрузки

Комментарии к статье Комментарии к статье

Не так давно электронные часы строили на так называемых часовых микросхемах серии К176 и специализированных микросхемах серий К145 (К145ИК1901) и КР1016 (КР1016ВИ1). Главный их недостаток - ограниченные возможности совершенствования (любое изменение требовало аппаратной доработки). Выгодно отличаются часы, собранные на базе микроконтроллера. Схема значительно упрощается, а "апгрейд" можно проводить без каких-либо изменений аппаратной части. Даже настройка хода часов может быть чисто программной. Именно такие часы описаны в публикуемой ниже статье.

Предлагаемые часы-будильник с четырехразрядным светодиодным индикатором выполнены на базе микроконтроллера (МК) и показывают время в 24-часовом формате с гашением незначащего нуля в разряде десятков часов. Предусмотрены режим отображения минут и секунд, подача короткого (длительностью 1 с) звукового сигнала в начале каждого часа (при необходимости эту функцию можно выключить), два выключаемых будильника и программная настройка коэффициента коррекции времени, от которого зависит точность хода часов. Значение коэффициента и установки будильников записываются в энергонезависимую память (EEPROM) МК. Состояние будильников и сигнала "Каждый час" индицируется светодиодами.

Принципиальная схема устройства изображена на рис. 1. Его основа - микроконтроллер PIC16F84 (DD1), рабочая частота которого задается генератором с внешним резонатором ZQ1 на 4 МГц. Вход сброса МК (MCLR) напрямую подключен к шине питания +5 В.

Простые часы-будильник на PIC16F84

Пятиразрядный порт А, все линии которого настроены на вывод, управляет светодиодом HL1 и переключает разряды индикатора HG1. Четыре старших разряда порта В (RB4-RB7) настроены на ввод и принимают управляющие сигналы от кнопок SB1- SB4, которые подключены к выводам без "подтягивающих" резисторов, потому что таковые имеются в МК. Разряды RB0 и RB1 порта В используются для загрузки в регистр DD2 семиэлементного кода, соответствующего отображаемой цифре. Разряд RB2 - выход сигнала 3Ч или срабатывания будильника (в зависимости от версии программы), который можно подключить непосредственно к пьезоизлучателю (ЗП-1, ЗП-3 и им подобные), к входу усилителя 3Ч или к исполнительному устройству, например, реле, которое в момент срабатывания будильника будет включать радиоприемник, телевизор или другой прибор.

Светодиоды HL1 и HL2 индицируют состояние соответственно сигнала "Каждый час" и будильников: HL1 светится, если сигнал "Каждый час" включен, a HL2 - если включен хотя бы один из будильников или если включены оба.

В устройстве применен специализированный часовой светодиодный индикатор фирмы Kingbright, содержащий четыре семиэлементных разряда с общим анодом и две точки индикации секунд между средними разрядами. Поскольку выводы элементов a-g являются общими для всех разрядов, управление индикатором возможно только в динамическом режиме. Для данной конструкции индикатор подошел как нельзя лучше: число линий ввода/вывода общего назначения у МК P1C16F84 не позволяет реализовать статическую индикацию, а при динамической с другим индикатором пришлось бы объединять выводы одноименных элементов разных разрядов на плате.

Резисторы R3-R10 ограничивают ток через светодиоды индикатора. Сдвиговый регистр DD2 введен для экономии выводов МК - он преобразует последовательный код в параллельный в ходе динамической индикации.

Конденсатор С4 фильтрует пульсации в цепи питания МК. Место для него на плате не предусмотрено, его припаивают непосредственно к выводам розетки МК со стороны печатных проводников.

Управляющая программа для МК написана на стандартном ассемблере MPASM фирмы Microchip и скомпилирована в среде MPLAB той же фирмы. Из 1024 ячеек памяти программ МК использовано около восьмисот, так что ресурсы для усовершенствования имеются.

Сразу после включения питания происходит инициализация управляющей программы: разряды портов настраиваются на ввод и вывод, устанавливается режим работы таймера 0, из энергонезависимой памяти считываются установки будильников и коэффициент коррекции времени.

Основная задача программы - формирование точных временных интервалов длительностью 1с - решается с помощью прерываний от таймера 0. Его предцелитель подключается к кварцевому генератору МК и настраивается на коэффициент деления 16. В регистр таймера 0 при каждой обработке прерывания записывается число от 00h до OFh (это и есть коэффициент коррекции времени, в исходном тексте программы он называется TIME_SET), поэтому таймер переполняется не за 256, а к примеру, за 250 циклов тактовой частоты (при TIME_SET=5).

В таком случае при использовании кварцевого резонатора на частоту 4 МГц прерывания от таймера 0 происходят с частотой 1 000 000 Гц/250/16 = 250 Гц. После инициализации программа переходит в цикл ожидания этих прерываний и подсчитывает их. Когда число прерываний станет равным 250, текущее время увеличивается на секунду.

Прерывания от таймера 0 обеспечивают и динамическую индикацию. Во время их обработки МК устанавливает нулевой уровень на выводах RA0- RA3 и тем самым гасит индикатор. Далее в регистр DD2 через выводы МК RB0 и RB1 загружается семиэлементный код, соответствующий символу, который нужно отобразить. Затем на одном из выводов RAO-RA3 устанавливается высокий логический уровень, благодаря чему зажигается одно из знакомест. Все это происходит 250 раз в секунду, и благодаря инерции зрения пользователь видит включенными сразу все разряды.

Старший бит загружаемого в регистр DD2 кода служит для управления секундными точками индикатора, которые мигают с частотой 1 Гц. Таким образом, с помощью прерываний от таймера 0 решаются сразу две задачи. Кроме того, в подпрограмме обработки прерывания МК проверяет, не является ли выводимая цифра незначащим нулем в левом разряде, и если это так, то вместо семиэлементного кода цифры О МК загружает в регистр двоичное число 11111111 (индикатор с общим анодом, поэтому единица соответствует погашенному сегменту).

Клавиатура опрашивается примерно 10 раз в секунду, но после первого нажатия некоторых кнопок и их комбинаций программа не реагирует на повторные нажатия в течение 1 с (например, если кнопки удерживать). Это нужно для удобства управления часами.

Простые часы-будильник на PIC16F84

При срабатывании будильника на выводе RB2 на 1 мин появляется прерывистый сигнал 3Ч или, в зависимости от версии программы, - высокий уровень (точнее, импульсы с частотой повторения 1 Гц). Мигают светодиоды HL1 и HL2. По истечении минуты вызывается специальная подпрограмма, которая восстанавливает правильное свечение светодиодов.

Устройством управляют кнопками SB1-SB4, каждая из которых совмещает несколько функций (см. мнемосхему, показанную на рис. 2). Часы работают в трех режимах: основном (индикация текущего времени), с коэффициентом коррекции времени и режиме установки будильников.

В основном режиме индикатор HG1 отображает часы и минуты, при этом секундные точки мигают с частотой 1 Гц. Текущее время устанавливают кнопками SB1 (часы) и SB2 (минуты): каждое их нажатие увеличивает показания на единицу, а если это делается при нажатой SB4, - уменьшает. При достижении нулевых значений разрядов минут переноса в разряд часов не происходит.

Если удерживать кнопку SB4 в течение трех секунд, на индикатор вместо часов и минут выводятся минуты и секунды текущего времени.

Сигнал "Каждый час" включают и выключают кнопкой SB3 при удерживаемой SB4 (светодиод HL1 соответственно загорается или гаснет).

Для перехода в режим установки будильников нажимают на кнопку SB3. На индикаторе появляются показания первого будильника, секундные точки светятся непрерывно. Часы и минуты устанавливают теми же кнопками SB1 и SB2 (в данном случае только увеличение показаний). Нажатие на кнопку SB4 приводит к выключению будильника, и на индикаторе остаются лишь прочерки (светятся элементы G). При последующем включении будильника этой же кнопкой на индикаторе появляются, а в регистры будильника записываются нули (а не предыдущие значения). Если еще раз нажать на кнопку SB3, на индикаторе появятся показания второго будильника, однако секундные точки погаснут. Оба будильника настраиваются одинаково.

Третье нажатие на кнопку SB3 переводит часы в режим работы с коэффициентом коррекции времени: на индикатор выводятся символы "ЕЕ X", где ЕЕ означает EEPROM, а X - текущее значение коэффициента в шестнадцатиричном виде; секундные точки продолжают мигать. Кнопкой SB1 можно увеличивать, а кнопкой SB2 - уменьшать значение коэффициента в интервале от Oh до Fh. Установленное число будет записываться в таймер 0 в подпрограмме обработки прерывания по его переполнению.

При четвертом нажатии на кнопку SB3 установки будильников и значение коэффициента записываются в EEPROM: первый будильник - по адресам 02h-05h (соответственно минуты, десятки минут, часы и десятки часов), второй - по адресам 06h-09h (в том же порядке), коэффициент - по адресу 01 h.

Устройство монтируют на печатной плате, изготовленной по чертежу, показанному на рис. 3 (штриховыми линиями изображены проволочные перемычки, соединяющие печатные проводники на противоположной стороне платы).

Простые часы-будильник на PIC16F84

Без каких-либо изменений в схеме и программе МК можно применить PIC16C84 - однократно программируемый аналог PIC16F84. Указанный на схеме индикатор заменим любым другим четырехразрядным с общим анодом (желательно, чтобы выводы одноименных элементов разрядов были соединены внутри индикатора). Допустимо использование четырех одноразрядных индикаторов, в этом случае в качестве секундных точек можно применить два отдельных светодиода, подключенных катодами к правому (по схеме) выводу резистора R10 (если необходимо - через ключ на транзисторе). Резисторы, конденсаторы, светодиоды, кнопки - любые малогабаритные.

Для часов разработаны три версии управляющей программы. Версия 1.10 - основная (ее НЕХ-файл приведен в таблице). При срабатывании будильников на выводе RB2 появляется сигнал (меандр) частотой 1 Гц. Его можно использовать для управления различными исполнительными механизмами и генераторами сигналов 3Ч: от простейших на двух-трех логических элементах до сложных систем цифрового синтеза звука [1, 2]. Динамическая индикация в этой версии работает постоянно.

Простые часы-будильник на PIC16F84
(нажмите для увеличения)

В версии 1.11 индикация тоже работает непрерывно, но при срабатывании будильников и в момент генерации сигнала "Каждый час" на выводе RB2 появляются пачки импульсов с частотой повторения 1 Гц (частота колебаний, заполняющих пачки, соответствует частоте прерываний от таймера 0 - 250 Гц). Этот сигнал можно подать непосредственно на излучатель или на вход усилителя 3Ч.

Версия 1.20 отличается от 1.11 только тем, что по умолчанию динамическая индикация в ней выключена (при этом все прочие функции часов работают в обычном режиме). Она начинает работать, если нажать на кнопку SB4, и автоматически выключается через 10 с. При нажатии кнопок и срабатывании будильника отсчет этого интервала начинается заново. Если будильник сработал при выключенной индикации, она не включается: нужно дважды нажать кнопку SB4, чтобы выключить будильник и включить индикацию. Эту программу целесообразно использовать, если для питания часов используется батарея, составленная из гальванических элементов или аккумуляторов: выключение индикации экономит энергию батареи.

При программировании МК в слове конфигурации указывают тип генератора - XT, Power-up таймер - включен, сторожевой таймер и защита кода - выключены. Кроме того, в ячейку 01 h энергонезависимой памяти данных нужно занести число от Oh до Fh (коэффициент коррекции времени), а по адресам 02h-09h - установки будильников.

Если программная настройка точности хода часов окажется грубой (что вполне вероятно), следует установить изображенный на схеме штриховыми линиями подстроечный конденсатор C3 (на печатной плате место для него предусмотрено).

НЕХ-файлы программы версий 1.11 и 1.20, а также исходные тексты всех версий

Литература

  1. Долгий А. Как записать в ПЗУ аудиоданные из wav-файла и "проиграть" их. - Радио, 2001, № 4, с. 25-27; № 5, с. 23, 24.
  2. Партии А. Звуковой модуль на одной микросхеме. - Радио, 2002, № 11, с. 40, 41.
  3. Прожирко Ю. Электронные часы-будильник с радиоприемником. - Радио, 2001, № 7, с. 16, 17; № 8, с. 17, 18.

Автор: А.Вакуленко, г.Тюмень

Смотрите другие статьи раздела Часы, таймеры, реле, коммутаторы нагрузки.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Определена масса света 09.09.2024

Вопрос о том, имеет ли свет массу, давно занимает умы ученых. Если бы оказалось, что фотон, частица света, действительно обладает ненулевой массой, это перевернуло бы наше понимание Вселенной и основополагающих законов физики. Недавнее исследование, проведенное командой ученых из Сычуаньского университета науки и техники, Китайской академии наук и Нанкинского университета, сделало значительный шаг в этом направлении, установив новый предел для возможной массы фотона. Исследование основывалось на анализе данных, собранных с помощью массива синхронизации пульсаров Паркса, а также на наблюдениях быстрых радиовсплесков - загадочных и мощных сигналов, исходящих из далеких галактик. Пульсары, являющиеся нейтронными звездами, испускающими регулярные пульсирующие лучи радиоволн, и радиовсплески, наблюдаемые в межгалактическом пространстве, предоставляют уникальные возможности для исследования природы света. Основное внимание в исследовании было уделено так называемой мере дисперсии - хар ...>>

Плазма способна изменять магнитные поля 09.09.2024

Взаимодействие плазмы с магнитными полями остается одной из ключевых загадок как в астрофизике, так и в разработке термоядерных реакторов. Плазма, состоящая из заряженных частиц, играет важную роль во многих космических и лабораторных процессах. От взаимодействия плазмы с магнитными полями зависит многое - от поведения звезд до перспектив создания устойчивой термоядерной энергии на Земле. Новое открытие ученых из Принстонской лаборатории физики плазмы в США обещает изменить наше понимание этих сложных процессов. Исследователи разработали инновационный метод, позволяющий с беспрецедентной точностью зафиксировать, как плазма взаимодействует с магнитными полями. С помощью протонной радиографии они смогли визуализировать эти взаимодействия, что ранее было недоступно. Процесс начинается с создания плазмы, которую получают, направляя мощный лазер на небольшой пластиковый диск. Одновременно создаются протоны - частицы, которые физики использовали в качестве диагностического инструмента. ...>>

Мужчины вредят природе больше женщин 08.09.2024

Вопрос о том, кто больше вредит окружающей среде - мужчины или женщины, оказался в центре внимания после публикации нового исследования шведских ученых. Результаты исследования показывают, что мужчины, по сравнению с женщинами, способствуют большему выбросу вредных веществ в атмосферу. Причем это связано не с профессиональной деятельностью или владением предприятиями, а с различиями в потребительском поведении. Исследование выявило, что мужчины тратят на 16% больше средств на товары и услуги, которые оказывают значительное негативное воздействие на окружающую среду. В первую очередь речь идет о продуктах, производство и использование которых сопровождается повышенным уровнем выбросов парниковых газов, способствующих глобальному потеплению. Хотя женщины расходуют сопоставимое количество денег, они выбирают товары и услуги, менее вредные для экологии. Наиболее заметная разница была обнаружена в расходах на автомобильное топливо. Мужчины значительно чаще покупают бензин и дизельное ...>>

Случайная новость из Архива

Будет построен тоннель Нью-Йорк - Вашингтон 10.08.2017

Основатель аэрокосмической компании SpaceX и автопроизводителя Tesla Элон Маск (Elon Musk) решил заняться строительством тоннеля между Нью-Йорком и Вашингтоном, который, по его словам, сократит время движения между двумя городами с четырех часов до 29 минут. Впервые об идее прокладки подземного тоннеля, чтобы избавиться от автомобильных пробок, Маск рассказал в конце прошлого года. Однако следует отметить важную деталь - сейчас речь идет о прокладке тоннеля для транспортной системы Hyperloop, а не автомобильном тоннеле, который Маск планирует проложить под Лос-Анджелесом.

В июле Элон Маск сообщил о словесном одобрении со стороны правительства строительства компанией Boring Company подземного тоннеля между Нью-Йорком и Вашингтоном с остановками по пути следования в Филадельфии и Балтиморе. Это сообщение было подвергнуто критике представителями массмедиа, утверждавшими, что никаких переговоров по этому поводу не было. Хотя спустя некоторое время представитель Белого дома подтвердил, что администрация провела "многообещающие переговоры" с Элоном Маском и руководством Boring Company.

"Мы планируем строить недорогие, быстроходные туннели, в которых будут размещаться новые высокоскоростные транспортные системы. Большинство из них будут стандартными герметичными туннелями с электрическими платформами, достигающими скорости 125 миль в час (201 км/ч). Для дальних маршрутов на прямых линиях, таких как между Нью-Йорком и Вашингтоном, имеет смысл использовать герметичные капсулы в разгерметизированном тоннеле (Hyperloop), чтобы обеспечить скорость до примерно 600 миль в час (966 км/ч)", - сообщил представитель Boring Company ресурсу Wired.

Ранее Маск заявлял об отсутствии намерения самостоятельно заниматься Hyperloop ввиду необходимости концентрации на проектах SpaceX и Tesla, если только реализация замысла не затянется. Реализовать его идею сейчас пытается несколько стартапов, включая Hyperloop One и Hyperloop Transportation Technologies.

Другие интересные новости:

▪ 22-нанометровый транзистор

▪ Новые мобильные процессоры Intel

▪ Сменная оптика для смартфона

▪ Мазь против змеиных укусов

▪ DRE120 и DRE240 - компактные эффективные источники питания на DIN-рейку

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Справочник электрика. Подборка статей

▪ статья Разделка туш добытых животных. Основы безопасной жизнедеятельности

▪ статья Почему мы мигаем? Подробный ответ

▪ статья Оператор пульта управления элеватором. Должностная инструкция

▪ статья Инструментарий электрика. Энциклопедия радиоэлектроники и электротехники

▪ статья Применение микросхемных стабилизаторов серии 142, К142, КР142. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2024