Menu English Ukrainian Russian Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Лазерно-утюжный метод изготовления печатных плат. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Технологии радиолюбителя

Комментарии к статье Комментарии к статье

Первым делом сделаем распечатку контуров платы и еще одну копию одного из слоя. Подписываем сразу слои плат TOP и BOTTON на распечатках. Иначе, вы потом просто не поймете какой слой нужно распечатывать на какую заготовку.

Файлы к распечатке gabarit TOP.pdf 1 шт и gabarit  BOTTON.pdf 2 шт.

Лазерно-утюжный метод изготовления печатных плат

Вид одного из слоев при распечатке контура платы

Возьмите одну копию контура нижнего слоя и вырежьте по контуру. По этому контуру в дальнейшем разметим текстолит и бумагу для переводки.

Лазерно-утюжный метод изготовления печатных плат

Вырежем заготовку по разметке из текстолита

Лазерно-утюжный метод изготовления печатных плат

Следующий шаг подготовка переводки рисунка печатной платы. Для переводки будем использовать странички глянцевых журналов свободных от рисунков. Текстовка допускается. Бумага должна быть неводостойкой, это легко проверить капнув на страничку.  Она должна сразу изменить свои качественные свойства. Для поиска подходящего места используйте вырезанный контур ПП. Важно ставить поля по сторонам особенно в горизонтальной плоскости с большим запасом.

Лазерно-утюжный метод изготовления печатных плат

Вырезка под переводку

После того как Вы сделали все выше указанное берите ранее распечатанные контуры слоев платы. Наклейте бумагу согласно рисункам указанным ниже.

Лазерно-утюжный метод изготовления печатных плат

Лазерно-утюжный метод изготовления печатных плат

Ждем покуда высохнет клей и печатаем файлы plata TOP.pdf на заготовку TOP и plata BOTTON.pdf на слой BOTTON. В итоге должно получится как на рисунке ниже.

Лазерно-утюжный метод изготовления печатных плат

После распечатки необходимо отделить лощенку от обычной бумаги. Это надо делать осторожно не затронув полезную площадь рисунка и нанося минимум ущерба заготовке.

Лазерно-утюжный метод изготовления печатных плат

Далее на свет надо совместить 2 слоя. Ориентиром совмещения лучше взять дырочки переходных отверстий.

Лазерно-утюжный метод изготовления печатных плат

Как все совпало, необходимо склеить это дело по сторонам

Лазерно-утюжный метод изготовления печатных плат

Затем между заготовок поместить заготовку текстолита и отцентровать

Лазерно-утюжный метод изготовления печатных платЛазерно-утюжный метод изготовления печатных плат

После этот "бутик" улаживаем в бумагу и начинаем гладить.

Лазерно-утюжный метод изготовления печатных плат

После глажки ждем покуда остынет, отделяем внешнюю бумагу и ложем плату вместе с лощенкой в воду на 5 минут. Потом лощенка легко отделяется. И как результат - получаем платы готовые к травлению.

Лазерно-утюжный метод изготовления печатных платЛазерно-утюжный метод изготовления печатных плат

Публикация: cxem.net

Смотрите другие статьи раздела Технологии радиолюбителя.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Использование Apple Vision Pro во время операций 16.03.2024

Медицинская команда больницы Кромвеля в Лондоне впервые применила Apple Vision Pro в ходе двух операций на позвоночнике. Это событие подтверждает потенциал гарнитуры в качестве медицинского инструмента, изменяющего подход к хирургической практике. Хотя сами врачи не использовали Vision Pro, операционная медсестра работала с виртуальной реальностью, используя очки во время подготовки и выполнения процедур. Гарнитура позволила просматривать виртуальные экраны в операционной, выбирать инструменты и следить за ходом операции. Программное обеспечение, разработанное компанией eXeX, специализирующейся на создании приложений на основе искусственного интеллекта для хирургии, существенно улучшило процесс оказания медицинской помощи пациентам. Использование Apple Vision Pro открывает новые возможности для разработки приложений в сфере здравоохранения, таких как клиническое образование, планирование операций, обучение и медицинская визуализация. Внедрение Apple Vision Pro в медицинскую пр ...>>

Хранение углерода в Северное море 16.03.2024

Министр энергетики Норвегии Терье Осланд объявил о запуске проекта Longship, нацеленного на создание центрального хранилища углекислого газа в Северном море. Этот амбициозный проект оценивается в $2,6 млрд и направлен на применение технологии CCS (углеродного захвата и хранения) для смягчения воздействия климатических изменений. Норвегия уже имеет опыт в области CCS благодаря успешным проектам Sleipner и Snohvit, и сейчас стремится увеличить объем углерода, запечатываемого под морским дном. План Longship предусматривает создание мощности по захвату и хранению 1,5 млн. тонн углерода ежегодно в течение 25 лет. Несмотря на позитивные перспективы, существуют опасения по поводу долгосрочных последствий такого хранения. Однако сторонники проекта утверждают, что морское хранение углерода имеет ряд преимуществ, включая минимальное воздействие на окружающую среду. Проект Longship осуществляется при участии компаний Equinor, Shell и TotalEnergies через совместное предприятие Northern Li ...>>

Выращены мини-органы из амниотической жидкости человека 15.03.2024

Международная команда ученых под руководством профессора Фань Сюлиня из Университета Чжэцзян разработала уникальный способ выращивания мини-органов из клеток, обнаруженных в амниотической жидкости человека. Этот значительный прорыв в медицине может привести к улучшению диагностики и лечения врожденных заболеваний. Органоиды, представляющие собой трехмерные клеточные структуры, имитирующие органы в меньшем масштабе, были выращены из клеток легких, почек и тонкого кишечника, найденных в амниотической жидкости. Этот метод открывает новые возможности для изучения различных состояний плода и может стать ключом к ранней диагностике и лечению врожденных дефектов. Хотя пока не проводились попытки использования этого метода в лечении, ученые надеются, что их исследования в будущем помогут бороться с серьезными врожденными заболеваниями, которые затрагивают миллионы новорожденных ежегодно. Этот прорыв может изменить практику медицинских вмешательств, позволяя диагностировать и лечить врожд ...>>

Случайная новость из Архива

Высокоточные измерения массы W-бозона 17.02.2018

Ученые, работающие в рамках эксперимента ATLAS на Большом Адронном Коллайдере, произвели первые в истории высокоточные измерения массы-энергии W-бозона. Этот бозон является одной из двух элементарных частиц, отвечающих за силы слабых ядерных взаимодействий, одного из четырех видов фундаментальных сил, которые определяют поведение и свойства всей материи в нашей Вселенной. Полученное учеными значение массы W-бозона составляет 80370+-19 МэВ (мегаэлектронвольт), что полностью укладывается в рамки Стандартной Модели Физики элементарных частиц, теории, которая описывает все известные элементарные частицы и виды взаимодействия между ними.

Измерение массы W-бозона основано на наборе данных, в котором фигурирует около 14 миллионов таких частиц, собранных в 2011 году, когда коллайдер еще работал на энергии 7 ТэВ. Полученное значение соответствует данным предыдущих измерений, выполненных на ускорителях LEP ("предке" БАК) и Tevatron. Ключевым моментом для проведения измерений являлась высокоточная калибровка датчиков эксперимента ATLAS и подробное моделирование процесса возникновения W-бозона. А собственно измерения производились на основе данных о событиях, связанных с Z-бозонами, и результатов других косвенных измерений.

W-бозон является одной из самых тяжелых из известных частиц. Он был открыт в 1983 году на ускорителе Super proton-antiproton Synchrotron Европейской организации ядерных исследований CERN, а в 1984 году за это открытие была присуждена Нобелевская премия в области физики. Несмотря на то, что свойства W-бозона изучались на протяжении более 30 лет, никому раньше не удавалось измерить его массу с достаточно высокой точностью.

"Данные, собранные на ускорителях предыдущих поколений за все время их работы, не смогли обеспечить необходимую точность измерения массы W-бозона" - рассказывает Танкреди Карли (Tancredi Carli), один из координаторов ATLAS Collaboration, - "Нам же удалось собрать все необходимые данные только за один год работы ускорителя. И сейчас, когда коллайдер работает на его полной мощности, у нас имеется хорошая возможность для получения более точных результатов и исследований в области так называемой новой физики, физики, выходящей за пределы Стандартной Модели".

И в заключение следует отметить, что высокоточное измерение массы W-бозона, истинного кварка и бозона Хиггса является ключевым моментом в деле поиска новой физики. Ведь любое отклонение практически полученного значения массы от теоретического может указывать на существование принципиально новых явлений, которые находятся в противоречии со Стандартной Моделью.

Другие интересные новости:

▪ Утвержден единый стандарт зарядных устройств для всех гаджетов

▪ Светофор с одним фонарем

▪ Тончайшее нановолокно

▪ Бильярдный кий с лазерным прицелом

▪ Нейтрино трансформировали

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Телефония. Подборка статей

▪ статья На седьмом небе (быть). Крылатое выражение

▪ статья Какая дикая птица самая многочисленная? Подробный ответ

▪ статья Смородина садовая. Легенды, выращивание, способы применения

▪ статья Гектографические чернила. Простые рецепты и советы

▪ статья Загадки про бытовые приборы

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





All languages of this page

Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2024