Бесплатная техническая библиотека ЭНЦИКЛОПЕДИЯ РАДИОЭЛЕКТРОНИКИ И ЭЛЕКТРОТЕХНИКИ Светодиодные лампы аварийного освещения. Энциклопедия радиоэлектроники и электротехники Энциклопедия радиоэлектроники и электротехники / Освещение При пропадании сетевого напряжения в подсобных или служебных помещениях желательно поддерживать хотя бы минимальный уровень освещенности, чтобы принять какие-то меры по устранению неисправности или покинуть помещение. В таком случае помогут лампы, способные светить некоторое время после отключения сетевого напряжения. Для них потребуется автономный источник питания или накопитель энергии, например, конденсатор большой емкости или аккумулятор. В качестве ламп аварийного освещения целесообразно использовать светодиодные, поскольку они самые экономичные. Для того чтобы лампа могла светить и после пропадания напряжения в сети, она, конечно, должна содержать встроенный источник энергии. В простейшем случае им может быть оксидный конденсатор относительно большой емкости, способный накопить в дежурном режиме энергию, достаточную для поддержания небольшой освещенности помещения в течение нескольких десятков секунд.
Схема такой лампы аварийного освещения показана на рис. 1. Ее можно изготовить на основе серийно выпускаемой светодиодной лампы либо сделать самостоятельно на базе элементов светодиодного карманного фонаря или отдельных светодиодов (см. статью "Сетевая лампа из светодиодов фонаря" в "Радио", 2013, № 2, с. 26). В дежурном режиме соединенные последовательно светодиоды питаются от источника, состоящего из балластного конденсатора С1, диодного моста VD1-VD4 и сглаживающего конденсатора С2. Конденсатор С3 - накопительный, сразу после подачи напряжения сети он заряжается от мостового выпрямителя через диод VD6, а когда светодиоды начнут светить, - через резистор R3 от однополупериодного выпрямителя на диоде VD5. На транзисторах VT1, VT2 собран стабилизатор тока, обеспечивающий равномерную разрядку конденсатора С3 и поддержание постоянной яркости свечения светодиодов в аварийном режиме. В дежурном режиме ток через светодиоды зависит в основном от емкости конденсатора С1, тока стабилизатора (в данном случае - около 1 мА) и числа светодиодов N (например, при N = 21 и емкости конденсатора, указанной на схеме, этот ток - около 20 мА). Резистор R2 ограничивает бросок зарядного тока при включении лампы, а через резистор R1 разряжается конденсатор С1 при ее отключении. В аварийной ситуации, когда сетевое напряжение пропадает, светодиоды питаются от накопительного конденсатора С3 через стабилизатор тока. Неизменное минимальное освещение поддерживается около 20 с, после чего яркость светодиодов плавно уменьшается в течение примерно 30 с. Увеличить продолжительность аварийного освещения можно увеличением емкости конденсатора С3.
Все детали, кроме светодиодов, монтируют на печатной плате, чертеж которой показан на рис. 2. Резисторы - С2-33, Р1-4, конденсаторы С2, С3 - оксидные импортные, С1 - от вышедшей из строя энергосберегающей компактной люминесцентной лампы (КЛЛ) или импортные, рассчитанные на работу при переменном напряжении 250...400 В. Из нее же извлечены и диоды 1N4007. Биполярный транзистор - любой из серий КТ315, КТ3012. Смонтированную плату помещают в пластмассовый корпус от КЛЛ деталями в сторону цоколя. Небольшая емкость накопительного конденсатора С3 не позволяет обеспечить продолжительное свечение лампы в аварийном режиме. Увеличение его емкости ведет к существенному увеличению габаритов. Выходом из этой ситуации может быть применение ионистора - конденсатора большой емкости (до нескольких фарад). Однако номинальное напряжение ионистора, как правило, не превышает 5 В, поэтому от него можно питать один светодиод или несколько включенных параллельно.
Схема такой лампы показана на рис. 3. В дежурном режиме светодиоды питаются от выпрямителя на диодах VD1-VD4, подключенного к сети через балластный конденсатор С1. При этом через соединенные последовательно светодиоды EL1-ELN-3 протекает ток около 20 мА, а через каждый из включенных параллельно ELN-2-ELN - втрое меньший. Для выравнивания тока через них служат токоограничивающие резисторы R3-R5, которые при налаживании подбирают так, чтобы суммарное падение напряжения на них и светодиодах ELN-2-ELN не выходило за пределы 4,5...5 В. До этого напряжения и заряжается ионистор С3. В первое время после включения лампы в сеть (пока он не зарядится до напряжения 3...3.3 В) светодиоды ELN-2-ELN не светят. При пропадании сетевого напряжения ионистор начинает разряжаться через эти светодиоды и в лампе светят только они. Продолжительность свечения зависит от емкости ионистора и числа подключенных к нему светодиодов. Увеличение их числа требует пропорционального увеличения сопротивления включенных последовательно с ними резисторов, и поскольку ток разрядки ионистора при этом возрастает, продолжительность аварийного освещения сокращается. Существенно продлить свечение лампы в аварийном режиме можно, заменив ионистор малогабаритным Li-ion аккумулятором (или батареей из Ni-Cd аккумуляторов) от сотового телефона или радиотелефона. Подборкой резисторов R3-R5 (при отключенном аккумуляторе) устанавливают на них и включенных последовательно с ними светодиодах ELN-2-ELN напряжение4...4,1 В при использовании Li-ion аккумулятора или 4,3...4,4 В, если применена батарея из трех Ni-Cd или Ni-MH аккумуляторов (именно до этих значений напряжения они и заряжаются в дежурном режиме). При пропадании сетевого напряжения светодиоды ELN-2-ELN питаются от аккумулятора. Запаса его энергии хватает на несколько часов непрерывной работы. По мере разрядки его напряжение и ток через светодиоды уменьшаются, но благодаря их нелинейной вольт-амперной характеристике полной разрядки не произойдет. Последовательно с аккумулятором можно установить выключатель SA1 для его отключения, например, при транспортировке лампы. Для увеличения яркости ламп, собранных по схеме на рис. 3, в аварийном режиме следует увеличить число параллельно соединенных светодиодов. В принципе, можно включить параллельно все светодиоды лампы, но в этом случае для обеспечения нормальной яркости в дежурном режиме придется существенно увеличить емкость балластного конденсатора С1, что приведет к нежелательному увеличению (до нескольких сотен миллиампер) потребляемого от сети тока. Кроме того, если аккумулятор разряжен, яркость свечения лампы в первое время после включения может быть низкой, так как существенная часть тока пойдет на зарядку аккумулятора.
Возможный выход из положения - последовательное соединение нескольких групп параллельно включенных светодиодов (рис. 4). Для изготовления такой лампы была применена печатная плата от фонаря с 32 светодиодами, соединенными параллельно. На плате они расположены так: 4 - в центре, 17 - по внешней окружности, 11 - по промежуточной. Последние выделены в группу (EL12-EL22), питаемую в аварийном режиме от аккумулятора, а остальные разделены на две группы, одна из которых содержит также 11 светодиодов (EL1-EL11), а вторая - десять (EL23-EL32). Эти группы и токоограничивающий резистор R3 включены последовательно, для чего соответствующие печатные проводники на плате перерезаны, а необходимые соединения выполнены отрезками изолированного провода. Потребляемый этой лампой ток определяется емкостью балластных конденсаторов С1, С2 и равен примерно 100 мА, т. е. через каждый светодиод течет ток около 9 мА. Конденсатор С3 сглаживает пульсации выпрямленного напряжения, делая свечение светодиодов более ровным. В дежурном режиме на светодиодах EL12-EL22 и резисторе R3 (его подбирают при налаживании) падает напряжение около 4,1 В, до которого и заряжается Li-ion аккумулятор G1. Если применена батарея из трех Ni-Cd или Ni-MH аккумуляторов, это напряжение следует увеличить до 4,4 В. Выключатель SA1 выполняет ту же функцию, что и в предыдущей конструкции.
Все детали, кроме светодиодов и резистора R3, монтируют на печатной плате из фольгированного стеклотекстолита, изготовленной по чертежу, показанному на рис. 5. Смонтированную плату и аккумулятор размещают в корпусе диаметром 57 мм от КЛЛ мощностью 35 Вт так, чтобы конденсаторы С1 и С2, предварительно обмотанные изоляционной лентой, оказались в цокольной части. Выключатель устанавливают на его боковой стенке. Внешний вид лампы показан на рис. 6.
Для того чтобы яркость свечения лампы с последовательно соединенными светодиодами оставалась в аварийном режиме такой же, как и в дежурном, ее необходимо дополнить питаемым от аккумулятора повышающим преобразователем напряжения. Схема такой лампы показана на рис. 7. В дежурном режиме светодиоды EL1-ELN питаются током 15...20 мА от узла питания, состоящего из балластного конденсатора С1, диодного моста VD1 - VD4 и сглаживающего конденсатора С2. Напряжение, до которого заряжается аккумулятор G1, устанавливают подборкой резистора R3.
Преобразователь напряжения содержит микросхему DD1, транзистор VT1, повышающий импульсный трансформатор Т1 и выпрямитель на диодах VD6-VD9. На элементе DD1.1 собран генератор импульсов с частотой следования около 30 кГц, на DD1.2 - формирователь управляющих импульсов. Соединенные параллельно элементы DD1.3, DD1.4 выполняют функции инвертирующей буферной ступени. С ее выхода импульсы поступают на затвор переключательного полевого транзистора VT1 . При питании от сети и замкнутых контактах выключателя SA1 аккумулятор G1 заряжается через светодиоды EL1 -ELN-1 и стабилитрон VD5. На один из входов элемента DD1.1 (вывод 5) через резистор R4 подано напряжение положительной полярности (около 4 В), а через резистор R5 - отрицательной (около 6 В) со стабилитрона VD5. В результате напряжение на этом входе имеет низкий уровень, генератор заторможен и преобразователь не работает. При пропадании сетевого напряжения на вход элемента DD1.1 поступает напряжение высокого уровня от аккумулятора G1, генератор включается и на светодиоды подается напряжение питания с выпрямителя на диодах VD6-VD9. Подстроечным резистором R7 можно в широких пределах изменять длительность управляющих импульсов и тем самым - яркость свечения лампы в аварийном режиме. Работоспособность преобразователя сохраняется при снижении напряжения питания до 2,8 В.
Резисторы R1, R2 (МЛТ), конденсаторы С1 (К73-17 или от КЛЛ), С2 (оксидный импортный) и диоды VD1-VD4 (также от КЛЛ) размещены на двусторонней печатной плате, чертеж которой показан на рис. 8. Монтаж в основном поверхностный. Конденсатор С2 устанавливают параллельно плате и приклеивают к ней клеем "Момент". Четыре отверстия в правой части платы предназначены для прохода выводов диодов VD1-VD4 (их припаивают к печатным проводникам обеих сторон). После проверки смонтированную плату обматывают двумя слоями изоляционной ленты и помещают в цокольную часть корпуса КЛЛ.
Преобразователь собран на печатной плате, изготовленной по чертежу на рис. 9. Монтаж - поверхностный. Конденсаторы С5-С7 и диоды VD6-VD9 - от КЛЛ, подстроечный резистор R7 - СПЗ-19а. Для изготовления трансформатора Т1 использован балластный дроссель от КЛЛ мощностью 10 Вт. Надо подобрать дроссель, конструкция которого позволяет без разборки намотать дополнительную обмотку - 10 витков провода МГТФ-0,2. В трансформаторе она будет выполнять функцию первичной (I) обмотки, а вторичной (II) станет обмотка дросселя. Li-ion аккумулятор от сотового телефона приклеен к плате на стороне, свободной от элементов. Выключатель SA1 - движковый ПД9-1 или аналогичный импортный. Внешний вид преобразователя вместе с платой светодиодов (от сетевой лампы с последовательным соединением 21 светодиода) показан на рис. 10.
В заключение следует отметить, что повышающий преобразователь можно собрать и на специализированной микросхеме, это, кстати, позволит уменьшить его размеры. Лампу с преобразователем можно использовать как ручной фонарь, но в этом случае в качестве источника питания желательно применить батарею, составленную из трех Ni-MH аккумуляторов. Автор: И. Нечаев Смотрите другие статьи раздела Освещение. Читайте и пишите полезные комментарии к этой статье. Последние новости науки и техники, новинки электроники: Преимущества апельсинового сока перед свежими фруктами
13.01.2025 Домашние устройства для майнинга и обогрева от Canaan Inc
13.01.2025 Мозг сохраняет старые воспоминания, не вытесняя их новыми
12.01.2025
Другие интересные новости: ▪ Хранение электроэнергии в кирпичах ▪ Беспроводной модуль для интернета вещей Microchip LoRa RN2483 ▪ Препараты для улучшения когнитивных функций Лента новостей науки и техники, новинок электроники
Интересные материалы Бесплатной технической библиотеки: ▪ раздел сайта Интересные факты. Подборка статей ▪ статья Когда колонок больше, чем каналов. Искусство аудио ▪ статья Бергамот. Легенды, выращивание, способы применения ▪ статья Миниатюрный радиоприемник. Энциклопедия радиоэлектроники и электротехники ▪ статья Фокус с тремя картами. Секрет фокуса
Оставьте свой комментарий к этой статье: Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте www.diagram.com.ua |