Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Светорегулятор с ДУ на ИК-лучах. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Освещение

Комментарии к статье Комментарии к статье

Описываемый ниже светорегулятор предназначен для использования с лампами накаливания. Управляют им с помощью пульта дистанционного управления (ПДУ) от любой бытовой аппаратуры (телевизор, видеопроигрыватель и т. д.). Устройство может быть полезно людям с ограниченными возможностями передвижения или просто людям, ценящим комфорт. Кроме того, регулятор позволяет экономить электроэнергию за счет более разумного и оправданного использования освещения.

Несмотря на то что идея использовать ПДУ для управления освещением явно не нова и подобных устройств разработано немало, найти в радиолюбительской литературе и Интернете подходящее для повторения не удалось. В результате было собрано устройство, схема которого представлена на рис. 1.

Светорегулятор с ДУ на ИК-лучах
Рис. 1 (нажмите для увеличения)

Предлагаемый светорегулятор выполнен на доступной элементной базе, хорошо повторяется (изготовлено несколько экземпляров) и собранный без ошибок в монтаже начинает работать сразу. Отмечена четкая, уверенная, без сбоев и ложных самопроизвольных срабатываний работа регулятора. Функцию коммутирующего элемента в нем выполняет микросхема фазового регулятора мощности КР1182ПМ1, что делает возможным плавное переключение света, защищая нить накаливания лампы от преждевременного перегорания.

Регулятор работает следующим образом. При нажатии на любую кнопку ПДУ излучаемый ИК-сигнал принимается фотоприемником В1. На его выходе (вывод 3) появляются пачки импульсов низкого уровня напряжения, которые через ограничивающий резистор R1 поступают на вход одновибратора, выполненного на микросхеме DA1, и запускают его. На выходе DA1 (вывод 3) формируется прямоугольный импульс положительной полярности, длительность которого зависит от сопротивления резистора R3 и емкости конденсатора С2 [1]. Импульс приходит на тактовый вход (вывод 14) счетчика-дешифратора DD1 и устанавливает на его выходе 1 (вывод 2) высокий уровень. Через диод VD1 он поступает на вывод 6 микросхемы DA2, и осветительная лампа EL1 загорается в полный накал.

При следующем нажатии на кнопку ПДУ высокий уровень с выхода 1 DD1 переходит на выход 2 (вывод 4), и на вывод 6 DA2 поступает напряжение с делителя, образованного резисторами R4 и R8. Яркость лампы уменьшается. Дальнейшие нажатия на кнопку приводят к тому, что высокий уровень последовательно появляется на выходах 3, 4, 5 (соответственно выводы 7, 10, 1), в делитель напряжения, поступающего на вывод 6 DA2, включаются резисторы R5, R6, R7, и яркость лампы еще более понижается. Когда же высокий уровень появляется на выходе 6 (вывод 5), который соединен с входом R (вывод 15), счетчик устанавливается в нулевое состояние, в котором напряжение на всех его выходах имеет низкий уровень. Лампа гаснет. Далее все повторяется.

Цепь R2C1 введена для повышения стабильности работы устройства. Диоды VD1-VD5 играют роль разделительных. Элементы VD6-VD10, R9, R10 и конденсаторы C4, C5 образуют источник питания устройства. Интегральный стабилизатор DA3 стабилизирует напряжение питания фотоприемника B1.

Регулятор собран на печатной плате (рис. 2) из фольгированного с одной стороны стеклотекстолита. Все резисторы и диоды установлены перпендикулярно плате (элементы цепей VD2R4-VD5R7, R9R10 впаяны в плату одним выводом, вторые соединены друг с другом). Фотоприемник B1 установлен над корпусом таймера DA1, для чего его выводы согнуты под прямым углом. К электросети и нагрузке плата подключена через соединительную колодку с винтовыми зажимами. Внешний вид смонтированной платы показан на рис. 3.

Светорегулятор с ДУ на ИК-лучах
Рис. 2

Светорегулятор с ДУ на ИК-лучах
Рис. 3

Возможная замена микросхемы КР1006ВИ1 - таймеры 555 с различными буквенными индексами (NE, LM и др.), интегрального стабилизатора L78L05 - отечественный КР1157ЕН502А и др. с выходным напряжением 5 В. Диоды VD1-VD5 - любые маломощные, VD6-VD9 -1N4004-1N4007, КД209А, КД209В и др. с обратным напряжением не менее 400 В. Стабилитрон КС191М заменим любым маломощным с напряжением стабилизации 9...10 В.

Для управления регулятором автор использует пульт от телевизора "Горизонт". Испытывались фотоприемники TSOP1133, TSOP1733. Результат одинаков. В помещении площадью 25 м2плата, расположенная на столе, уверенно принимала отраженный сигнал при направлении пульта в разные стороны, не мешали даже расположенные в помещении предметы обстановки. При накрывании платы листом бумаги чувствительность устройства несколько падала. И лишь после того как фотоприемник был обернут слоем черной изоленты, он стал принимать только прямое излучение от ПДУ. Но и его оказалось достаточно, чтобы нормально пользоваться регулятором.

В устройстве можно применить и другие фотоприемники, но для максимальной дальности приема важно, чтобы несущие частоты ПДУ и фотоприемника были одинаковыми (для TSOP1133 - 33 кГц [2]). Хотелось также добавить, что необходимо оберегать фотоприемник от прямых солнечных лучей и яркого света электроламп.

Плата установлена в декоративном кожухе, закрывающем крепление люстры к потолку. Как показала практика, отраженного от него ИК-излучения вполне достаточно для переключения. Если кожух вплотную прилегает к потолку, в нем необходимо просверлить одно-два небольших отверстия для попадания внутрь излучения ПДУ. Штатный выключатель светильника, расположенный на стене, должен быть включен и будет играть роль вспомогательного.

При желании подбором резисторов R4-R7 можно изменить яркость свечения лампы по своему вкусу. При увеличении сопротивления яркость падает, и наоборот. Мощность электролампы EL1 (или другой нагрузки, подключаемой к регулятору) не должна превышать 150 Вт. Для ее значительного увеличения достаточно подключить симистор [3]. Введением дополнительного оксидного конденсатора емкостью 100 мкФ (с номинальным напряжением 16 В) параллельно резистору R8 (плюсом к выводу 6 DA2) можно добиться плавного переключения света, что может быть более привлекательным.

Число уровней яркости света можно увеличить или уменьшить. Например, если желательно иметь шесть уровней, с выводом 15 микросхемы DD1 следует соединить ее вывод 6, а вывод 5 через диод и резистор сопротивлением 46 кОм подключить к выводу 6 микросхемы DA2. Для получения девяти уровней к этому выводу DA2 подключают (также через диоды и резисторы) выводы 5, 6, 9, 11 DD1, а вывод 15 последней соединяют с общим проводом. Разумеется, для более "плавного" регулирования при увеличенном числе уровней придется заново подобрать резисторы цепей, соединяющих выходы микросхемы DD1 с выводом 6 DA2.

Если необходимости в регулировании яркости нет, а достаточно только включать и выключать лампу, диоды VD1-VD5 и резисторы R4-R7 удаляют, а выход 2 (вывод 4) микросхемы DD1 соединяют с ее входом R (вывод 15). Можно поступить иначе (рис. 4): заменить счетчик-дешифратор К561ИЕ8 одним из D-триггеров микросхемы К561ТМ2, работающим в счетном режиме, а микросхему КР1182ПМ1Р - симистором VS1, подключенным через оптрон U1 (нумерация остальных элементов продолжает начатую на рис. 1).

Светорегулятор с ДУ на ИК-лучах
Рис. 4

В этом случае мощность нагрузки будет ограничена параметрами симистора (при использовании BTA16-600B -2 кВт).

Очевидно, что светорегулятор можно использовать не только для управления освещением, но и для регулирования мощности различных электронагревательных приборов (например, ТЭНов), электродвигателей и т. п. устройств соответствующей мощности. Входную часть регулятора можно использовать как источник управляющего сигнала, оснащая простым ДУ различные устройства, например, такие, доступ к которым затруднен или они находятся на значительной высоте (сигнал снимают с вывода 3 DA1). Для поочередного управления двумя различными нагрузками можно задействовать второй триггер микросхемы К561ТМ2 (рис. 5). Включение нагрузок будет происходить в последовательности: включена нагрузка 1 - включена нагрузка 2 - включены обе нагрузки - выключены обе нагрузки - включена нагрузка 1 и т. д.

Светорегулятор с ДУ на ИК-лучах
Рис. 5

В заключение следует сказать, что более грамотным, наверное, было бы регулирование яркости света от минимальной к максимальной. В этом случае при включении меньше нагрузка на микросхему КР1182ПМ1Р, продлевается ресурс электроламп и для зрения не столь контрастный переход. Просто автору показалось это неудобным. А изменить направление регулирования можно, поменяв местами точки подключения анодов диодов VD1 с VD5 и VD2 с VD4.

Внимание! Все элементы и цепи регулятора имеют гальваническую связь с сетью 220 В, поэтому при испытаниях, налаживании и в процессе эксплуатации следует соблюдать правила электробезопасности.

Литература

  1. Зельдин Е. Применение интегрального таймера КР1006ВИ1. - Радио, 1986, № 9, с. 36, 37.
  2. Долгий А. Модули приемников ИК-сигналов. - Радио, 2005, № 1, с. 47-50.
  3. Немич А. Микросхема КР1182ПМ1 - фазовый регулятор мощности. - Радио, 1999, № 7, с. 44-46.

Автор: К. Литовченко

Смотрите другие статьи раздела Освещение.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Токсичность интернета преувеличена 07.01.2026

Социальные сети нередко воспринимаются как арена постоянной агрессии, оскорблений и распространения фейковой информации. Новое исследование Стэнфордского университета показывает, что реальность значительно отличается от популярного представления: интернет гораздо менее токсичен, чем многие пользователи считают. Ученые опросили более тысячи американцев, попросив их оценить долю пользователей соцсетей, которые ведут себя агрессивно или распространяют ненависть. Оказалось, что впечатления людей сильно преувеличивают масштабы проблемы. Например, респонденты считали, что почти половина пользователей Reddit хотя бы раз оставляла оскорбительные комментарии, тогда как фактические данные платформы показывают, что таких людей не более 3%. Аналогичная ситуация наблюдается с дезинформацией. Опрос показал, что большинство участников считали почти половину аудитории Facebook распространителями фейковых новостей, однако статистика говорит об обратном: фактическая доля таких пользователей состав ...>>

Процессоры Ryzen AI 400 07.01.2026

Современные вычисления все больше ориентируются на интеграцию искусственного интеллекта и высокую производительность в компактных устройствах, таких как ноутбуки и мини-ПК. Новая линейка процессоров AMD Ryzen AI 400 демонстрирует, как разработчики объединяют мощные центральные ядра, графику и нейросетевые ускорители в одном чипе, чтобы удовлетворять растущие потребности пользователей в играх, контенте и ИИ-приложениях. AMD представила процессоры серии Gorgon Point, которые включают до 12 ядер Zen 5 и до 24 потоков вычислений. Чипы поддерживают интегрированную графику RDNA 3.5, обеспечивают максимальную тактовую частоту до 5,2 ГГц и имеют энергопотребление от 15 Вт до 54 Вт. Особое внимание уделено NPU, способному обрабатывать до 60 триллионов операций в секунду (TOPS), что делает эти процессоры эффективными для задач с искусственным интеллектом. Конструкция Ryzen AI 400 сочетает ядра Zen 5 и Zen 5c, обеспечивая высокую гибкость и производительность. Несмотря на то, что архитектур ...>>

Женщины лучше распознают признаки болезни по лицу 06.01.2026

Способность распознавать, что кто-то нездоров, часто проявляется интуитивно: бледная кожа, опущенные веки, уставшее выражение лица могут сигнализировать о недомогании. Новое исследование международной группы ученых показало, что женщины в среднем точнее мужчин улавливают такие тонкие невербальные признаки болезни, что может иметь эволюционные и социальные объяснения. В отличие от предыдущих работ, где использовались отредактированные фотографии или имитация больных лиц, ученые решили проверить, насколько люди способны распознавать естественные признаки недомогания. Такой подход позволил оценить реальную чувствительность к изменениям в лицах, возникающим при болезни. В исследовании приняли участие 280 студентов, поровну мужчин и женщин. Участникам предложили оценить 24 фотографии, на которых изображены люди как в здоровом состоянии, так и во время болезни. Это дало возможность сравнить восприятие естественных признаков недомогания в реальных лицах. Для анализа состояния каждого ...>>

Случайная новость из Архива

6 зондов отправятся искать жизнь на Марсе 04.05.2012

Группа ученых из Университета штата Вашингтон разработала оригинальную миссию по поиску жизни на Марсе. Ученые хотят отправить на Красную планету несколько небольших космических аппаратов, которые упадут на поверхность Марса в различных регионах и проведут ряд тестов по поиску признаков жизни.

Ученые уже направили в НАСА свои разработки, названные миссией BOLD (Biological Oxidant and Life Detection). В ходе миссии шесть 60-кг зондов в форме перевернутой пирамиды будут сброшены с орбиты Марса и опустятся на его поверхность. После этого бортовая аппаратура зондов проведет полтора десятка экспериментов и передаст данные на орбитальный аппарат. Зонды измерят влажность и кислотность почвы, количество неорганических ионов, а также концентрацию перекиси водорода - в соответствии с гипотезой Шульце-Макуша, которая предполагает, что марсианские микроорганизмы могут состоять из смеси воды и перекиси водорода. Кроме того, каждый зонд будет оснащен простым микроскопом для поиска форм жизни, похожих на древние земные ископаемые микроорганизмы микрофоссилии. Один из инструментов будет искать длинные молекулы, схожие с нуклеиновыми кислотами. Некоторые эксперименты будут повторять работу аппаратов Viking, но с большей точностью.

Каждый зонд миссии BOLD сможет приземлиться на поверхность Марса с вероятностью 50/50. Однако учитывая, что зондов будет шесть, вероятность успеха миссии составляет 98%.

Миссия BOLD представляет собой пример космических беспилотных проектов нового поколения: выполненных с учетом новейших достижений науки и техники, но использующих небольшие относительно дешевые и простые в доставке космические аппараты. По мнению многих специалистов, подобные мини-зонды в ближайшем будущем поставят ученым множество ценных научных данных.

Другие интересные новости:

▪ Микросхемы Aquantia Multi-Gig Ethernet для самоуправляемых автомобилей

▪ SIMO PMIC-преобразователь MAX77654

▪ Молекулярный датчик для смартфонов

▪ Разгаданы тайны кошачьего обоняния

▪ Кофе после рабочего дня вредит сну

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Узлы радиолюбительской техники. Подборка статей

▪ статья Экономика предприятия. Конспект лекций

▪ статья Почему мы устаем? Подробный ответ

▪ статья Электротехнологический персонал при обслуживании АТС. Типовая инструкция по охране труда

▪ статья Штемпелевание латуни. Простые рецепты и советы

▪ статья Расходомер топлива для автомобиля. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2026