Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Мощная светодиодная лампа. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Освещение

Комментарии к статье Комментарии к статье

При разработке предлагаемого устройства была поставлена задача создания светодиодной лампы, потребляющей от сети 220 В меньше 10 Вт, с большей по сравнению с лампой накаливания мощностью 100 Вт яркостью свечения. Основой преобразователя напряжения блока питания светодиода выбрана микросхема HVLED805 [1]. Она позволяет стабилизировать ток светодиодной нагрузки без использования оптронов, датчиков напряжения и тока в цепи нагрузки, в результате чего блок питания существенно упрощается. Проектирование было облегчено программой автоматизированного расчета преобразователя, о которой подробно рассказано в статье [2].

Мощная светодиодная лампа
Рис. 1 (нажмите для увеличения)

Стабильный ток через примененный светодиод SPHCWTHDD803WHROJC при 9 Вт потребляемой мощности должен быть равен 0,51 А (см. табл. 2 в [3]), что примерно на 10% больше вычисленного программой максимального тока 0,45 А. После увеличения предложенного программой типоразмера магнитопровода с ЕЕ13 до ЕЕ16 необходимо проверить, что преобразователь сможет обеспечить требуемый режим светодиода. Убедиться в этом позволит контроль параметров изготовленного устройства. Для корректирования режима преобразователя потребуется заново пересчитать сопротивления резисторов в делителе импульсного напряжения, подаваемого на вывод DMG микросхемы, а также датчика тока. Для этого необходимо воспользоваться расчетными формулами из справочного листка [1] или технического описания микросхемы [4]. Также можно применить приложенную к статье разработанную автором электронную таблицу Iamp805.xls. Такой откорректированный результат проектирования преобразователя для питания светодиода SPHCWTHDD803WHROJC стабилизированным током 0,51 А иллюстрирует принципиальная схема, показанная на рис. 1.

Терморезистор RK1 уменьшает импульс тока в момент включения в сеть. Диодный мост VD1 выпрямляет напряжение сети Конденсаторы С1 и С2 сглаживают пульсации выпрямленного напряжения. Эти конденсаторы и дроссель L1 образуют фильтр, который подавляет импульсные помехи из питающей сети, а также препятствует проникновению в нее высокочастотных пульсаций, создаваемых преобразователем. Импульсный трансформатор Т1 имеет одну первичную обмотку (I) и две вторичные (II и III). Первичная (I) зашунтирована цепью из встречно-последовательно соединенных защитного диода VD2 и обычного VD3, которая ограничивает напряжение на этой обмотке и тем самым защищает от пробоя выходной мощный полевой транзистор микросхемы HVLED805 (DA1). Исток этого транзистора (выводы 1 и 2) соединен с общим проводом микросхемы (вы вод 4) через резистор R4, выполняющий функцию датчика тока.

Обмотка II трансформатора Т1 использована для питания микросхемы DA1. Выпрямленное диодом VD4 и сглаженное конденсатором С6 напряжение подано на вывод питания VCC. Резистор R5 ограничивает амплитуду импульсов тока через диод VD4. Также сигнал с обмотки II через резисторный делитель R1R2 подается на вывод 6 микросхемы DA1. Обрабатывая этот сигнал, микросхема может управлять напряжением на светодиоде EL1 и текущим через него током, о чем рассказано в статье [1].

Обмотка III использована для питания светодиода EL1. Напряжение с этой обмотки выпрямляет диод VD5, высокочастотные пульсации подавляет конденсатор С8, низкочастотные - С9. Резистор R6 - минимальная нагрузка блока питания. Цепь частотной компенсации R3C3C4 предотвращает паразитную генерацию преобразователя на частотах выше основной. Конденсатор С5, подключенный к выводу 5 микросхемы DA1, использован дли стабилизации тока через светодиод EL1, о чем также рассказано в статье [1].

Мощная светодиодная лампа
Рис. 2

Преобразователь смонтирован на печатной плате (рис. 2) из односторонне фольгированного стеклотекстолита толщиной 1,2 мм. Плата рассчитана на элементы для поверхностного монтажа типоразмера 0805 и элементы, монтируемые в отверстия. Она закреплена в лампе тремя винтами на изоляционных стойках. При разработке платы учтено, что печатный проводник, соединенный с выводом стока мощного коммутирующего транзистора в микросхеме (DRAIN), служит для него теплоотводом.

Импульсный трансформатор Т1 намотан на магнитопроводе ЕЕ16/8/5. Обмотка I содержит 120 витков провода ПЭЬТЛ-2 диаметром 0,21 мм (индуктивность обмотки - 2 мГн), обмотка II - 17 витков ПЭТВ-2 диаметром 0,1 мм, обмотка III - 20 витков литцендрата 10x0,12 мм. При намотке на каркасе с использованием межобмоточной и межслойной изоляции размещают последовательно первую секцию обмотки I из 60 витков, затем обмотку III и вторую секцию обмотки I из 60 витков, последней - обмотку II. Секции обмотки I соединяют на свободном выводе трансформатора, этот вывод в плату не запаивают. Для получения требуемой индуктивности первичной обмотки потребовалось алмазным надфилем укоротить центральный керн до образования немагнитного зазора 0,17 мм.

Дроссель L1 индуктивностью 0,47... 1 мГн взят от неисправной энергосберегающей лампы. Диоды VD2 и VD3 соединены в общей точке навесным монтажом. Резистор R4 (датчик тока) составлен из двух параллельно соединенных резисторов R4.1 и R4.2 по 2,2 Ома, 0,125 Вт.

Мощная светодиодная лампа
Рис. 3

Конструктивно светодиодная лампа выполнена на основе неисправной компактной люминесцентной лампы мощностью 26 Вт, из которой удалены ЭПРА и спиральный баллон. В оставшемся пластиковом корпусе со стороны крепления теплоотвода выпилено окно шириной 25 мм, куда помещена плата преобразователя так, чтобы печатные проводники и элементы поверхностного монтажа были обращены к теплоотводу, как показано на рис. 3. Края печатной платы шириной 24 мм приклеены нитроклеем в месте соприкосновения с корпусом лампы. К корпусу привинчен теплоотвод диаметром 60 мм и высотой 43 мм, к которому с применением теплопроводящей пасты КПТ-8 четырьмя винтами М2 прижат светодиод EL1. Эффективная охлаждающая поверхность теплоотвода - около 300 см2.

В процессе испытаний проверен режим светодиода EL1: прямое напряжение на нем 18 В при токе 0,52 А. Этот режим оставался стабильным при изменении напряжения питания с помощью лабораторного автотрансформатора в пределах 176...254 В. При необходимости ток светодиода может быть скорректирован подбором резисторов R4.1 и R4.2, образующих датчик тока R4.

При первом включении проконтролированы пиковое значение и форма тока коммутирующего транзистора по падению напряжения на датчике тока - резисторе R4. Форма импульсов тока - пилообразная. Измеренное пиковое значение 0,28 А меньше промоделированного программой максимального значения 0,303 А. В результате подтверждено отсутствие насыщения магнитопровода.

Проверено функционирование преобразователя в режимах короткого замыкания и обрыва нагрузки. Результаты этих испытаний совпали с расчетами по программе. При токе нагрузки 0,2 А преобразователь работает в режиме пропуска одной впадины на частоте 132 кГц. При увеличении тока нагрузки до 0,4 А коммутация происходит на первой впадине, частота увеличивается до 140 кГц. С дальнейшим увеличением тока нагрузки до 0,53 А частота снижается до 105 кГц.

В режиме замыкания нагрузки преобразователь формирует с частотой 13,5 кГц короткие импульсы длительностью чуть менее 2 мкс. Без нагрузки (светодиода) преобразователь поддерживает на выходе напряжение около 20 В, генерируя пачки импульсов с частотой 2,17 кГц.

Измеренный КПД преобразователя - 82 % при напряжении сети 220 В. Измерения показали, что температура микросхемы в установившемся тепловом режиме не превышает 54 °С. В светодиодной лампе (рис. 3) температура корпуса светодиода в установившемся режиме не превышает 62 °С. С учетом теплового сопротивления перехода кристалл-корпус 2,24 °С/Вт можно оценить температуру кристалла 62+9-2,24=82 °С, что намного меньше максимально допустимого значения 150 “С [3] и вполне приемлемо с точки зрения обеспечения долговечности прибора.

Мощная светодиодная лампа
Рис. 4

Для сравнения светодиодной лампы с лампой накаливания мощностью 100 Вт свет обеих ламп с одинакового расстояния направлен на пластину из молочного оргстекла. Как видно на рис. 4, световое пятно от светодиодной лампы, расположенное справа, заметно ярче, чем от лампы накаливания.

Литература

  1. Косенко С. Микросхема HVLED805 для импульсных сетевых блоков питания - Радио, 2012, № 11, с. 40-42.
  2. Косенко С. Расчет ИИП на микросхемах серии VlPer-plus. - Радио. 2012, № 12, с. 19, 20.
  3. SPECIFICATION MODEL: SPHCWTHDD803 WHROJC. - simpex.ch/fileadmin/bereiche/systemkomponen ten/News/24082011/SPHCWTHDD803WHR0JC.pdf.
  4. Off-line LED driver with piimary-sensing HVLED805. - st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/DATASHEET/CD00287280.pdf.

Автор: С. Косенко

Смотрите другие статьи раздела Освещение.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Питомцы как стимулятор разума 06.10.2025

Помимо эмоциональной поддержки, домашние питомцы могут оказывать заметное воздействие на когнитивные процессы, особенно у пожилых людей. Новое масштабное исследование показало, что общение с кошками и собаками не просто улучшает настроение - оно действительно способствует замедлению возрастного снижения умственных способностей. Работа проводилась в рамках проекта Survey of Health, Ageing and Retirement in Europe (SHARE), охватывающего период с 2004 по 2022 год. В исследовании приняли участие тысячи европейцев старше 50 лет. Анализ показал, что владельцы домашних животных демонстрируют более устойчивые когнитивные функции по сравнению с теми, кто не держит питомцев. Особенно выражен эффект оказался у владельцев кошек и собак. Согласно данным ученых, владельцы собак дольше сохраняют хорошую память, в то время как хозяева кошек медленнее теряют способность к быстрому речевому взаимодействию. Исследователи связывают это с тем, что ежедневное взаимодействие с животными требует внимани ...>>

Мини-ПК ExpertCenter PN54-S1 06.10.2025

Компания ASUSTeK Computer презентовала новый мини-компьютер ASUS ExpertCenter PN54-S1. Устройство ориентировано на пользователей, которым важно сочетание производительности, энергоэффективности и универсальности - от офисных задач до мультимедийных проектов. В основе ExpertCenter PN54-S1 лежит современная аппаратная платформа AMD Hawk Point, использующая архитектуру Zen 4. Это поколение чипов отличается улучшенным управлением энергопотреблением и повышенной вычислительной мощностью. Новинка доступна в конфигурациях с процессорами Ryzen 7260, Ryzen 5220 и Ryzen 5210, представленных AMD в начале 2025 года. Таким образом, устройство охватывает широкий диапазон задач - от базовых офисных до ресурсоемких вычислений. Корпус мини-ПК выполнен из прочного алюминия и имеет размеры 130&#215;130&#215;34 мм, что делает его практически незаметным на рабочем столе или за монитором. Несмотря на компактность, внутренняя компоновка позволяет установить два модуля оперативной памяти SO-DIMM ...>>

Глазные капли, возвращающие молодость зрению 05.10.2025

С возрастом человеческий глаз постепенно теряет способность четко видеть на близком расстоянии - развивается пресбиопия, или возрастная дальнозоркость. Этот естественный процесс связан с утратой эластичности хрусталика и ослаблением цилиарной мышцы, отвечающей за фокусировку. Миллионы людей по всему миру сталкиваются с необходимостью носить очки для чтения или прибегают к хирургическим методам коррекции. Однако исследователи из Центра передовых исследований пресбиопии в Буэнос-Айресе представили решение, которое может стать удобной и неинвазивной альтернативой - специальные глазные капли, способные улучшать зрение на длительный срок. Разработку возглавила Джованна Беноцци, директор Центра. По ее словам, цель исследования состояла в том, чтобы предоставить пациентам с пресбиопией эффективный и безопасный способ коррекции зрения без хирургического вмешательства. Новые капли, созданные на основе пилокарпина и диклофенака, показали убедительные результаты: уже через час после первого пр ...>>

Случайная новость из Архива

Мозг девочек развивается быстрее 01.03.2023

Американские ученые обнаружили значительные различия в структуре мозга мальчиков и девочек на протяжении их взросления.

Для проведения исследования была составлена выборка из 8,9 тыс. детей в возрасте 9-10 лет. Их родителей попросили периодически приводить детей на обследование головного мозга с помощью аппарата МРТ.

Ученых интересовало изменение структуры серого и белого вещества в мозге, а также обусловленные полом различия в этих изменениях. В результате удалось подтвердить давнюю гипотезу, что пути развития мужского и женского мозга значительно отличаются. В том числе, существенные различия фиксировались в структуре и темпах развития сети пассивного режима работы мозга, которая играет важную роль в функционировании мозга при бездействии.

Как правило, для девочек была характерна более высокая плотность связей между нейронами в этой сети, а также повышенная плотность белого вещества в связанных с ней регионах мозга. По мнению ученых, это отражает то, что мозг девочек и девушек в среднем быстрее взрослеет, чем это делает нервная система мальчиков и юношей. Аналогичные закономерности ученые выявили при сопоставлении степени "взрослости" мозга и уровня интеллектуального развития детей.

Открытие этих различий в характере развития мозга у девочек и мальчиков объясняет существование возрастных различий в когнитивных способностях школьников и школьниц.

Другие интересные новости:

▪ Дешевые микросхемы - генераторы сигналов

▪ Микросхема ST25DV02K-W для управления светом и моторами

▪ Модули памяти PNY XLR8 Gaming EPIC-X RGB DDR4

▪ Домоводство спорту не замена

▪ Планшетный сканер Xerox DocuMate 4700 для СМБ

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Передача данных. Подборка статей

▪ статья Суровая проза. Крылатое выражение

▪ статья Как император Павел I собирался помочь Наполеону в войне против Великобритании? Подробный ответ

▪ статья Погрузка в суда лесных грузов и их выгрузка. Типовая инструкция по охране труда

▪ статья Светодиоды. Справочник

▪ статья Гибкая палочка. Секрет фокуса

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025