Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Мощная светодиодная лампа. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Освещение

Комментарии к статье Комментарии к статье

При разработке предлагаемого устройства была поставлена задача создания светодиодной лампы, потребляющей от сети 220 В меньше 10 Вт, с большей по сравнению с лампой накаливания мощностью 100 Вт яркостью свечения. Основой преобразователя напряжения блока питания светодиода выбрана микросхема HVLED805 [1]. Она позволяет стабилизировать ток светодиодной нагрузки без использования оптронов, датчиков напряжения и тока в цепи нагрузки, в результате чего блок питания существенно упрощается. Проектирование было облегчено программой автоматизированного расчета преобразователя, о которой подробно рассказано в статье [2].

Мощная светодиодная лампа
Рис. 1 (нажмите для увеличения)

Стабильный ток через примененный светодиод SPHCWTHDD803WHROJC при 9 Вт потребляемой мощности должен быть равен 0,51 А (см. табл. 2 в [3]), что примерно на 10% больше вычисленного программой максимального тока 0,45 А. После увеличения предложенного программой типоразмера магнитопровода с ЕЕ13 до ЕЕ16 необходимо проверить, что преобразователь сможет обеспечить требуемый режим светодиода. Убедиться в этом позволит контроль параметров изготовленного устройства. Для корректирования режима преобразователя потребуется заново пересчитать сопротивления резисторов в делителе импульсного напряжения, подаваемого на вывод DMG микросхемы, а также датчика тока. Для этого необходимо воспользоваться расчетными формулами из справочного листка [1] или технического описания микросхемы [4]. Также можно применить приложенную к статье разработанную автором электронную таблицу Iamp805.xls. Такой откорректированный результат проектирования преобразователя для питания светодиода SPHCWTHDD803WHROJC стабилизированным током 0,51 А иллюстрирует принципиальная схема, показанная на рис. 1.

Терморезистор RK1 уменьшает импульс тока в момент включения в сеть. Диодный мост VD1 выпрямляет напряжение сети Конденсаторы С1 и С2 сглаживают пульсации выпрямленного напряжения. Эти конденсаторы и дроссель L1 образуют фильтр, который подавляет импульсные помехи из питающей сети, а также препятствует проникновению в нее высокочастотных пульсаций, создаваемых преобразователем. Импульсный трансформатор Т1 имеет одну первичную обмотку (I) и две вторичные (II и III). Первичная (I) зашунтирована цепью из встречно-последовательно соединенных защитного диода VD2 и обычного VD3, которая ограничивает напряжение на этой обмотке и тем самым защищает от пробоя выходной мощный полевой транзистор микросхемы HVLED805 (DA1). Исток этого транзистора (выводы 1 и 2) соединен с общим проводом микросхемы (вы вод 4) через резистор R4, выполняющий функцию датчика тока.

Обмотка II трансформатора Т1 использована для питания микросхемы DA1. Выпрямленное диодом VD4 и сглаженное конденсатором С6 напряжение подано на вывод питания VCC. Резистор R5 ограничивает амплитуду импульсов тока через диод VD4. Также сигнал с обмотки II через резисторный делитель R1R2 подается на вывод 6 микросхемы DA1. Обрабатывая этот сигнал, микросхема может управлять напряжением на светодиоде EL1 и текущим через него током, о чем рассказано в статье [1].

Обмотка III использована для питания светодиода EL1. Напряжение с этой обмотки выпрямляет диод VD5, высокочастотные пульсации подавляет конденсатор С8, низкочастотные - С9. Резистор R6 - минимальная нагрузка блока питания. Цепь частотной компенсации R3C3C4 предотвращает паразитную генерацию преобразователя на частотах выше основной. Конденсатор С5, подключенный к выводу 5 микросхемы DA1, использован дли стабилизации тока через светодиод EL1, о чем также рассказано в статье [1].

Мощная светодиодная лампа
Рис. 2

Преобразователь смонтирован на печатной плате (рис. 2) из односторонне фольгированного стеклотекстолита толщиной 1,2 мм. Плата рассчитана на элементы для поверхностного монтажа типоразмера 0805 и элементы, монтируемые в отверстия. Она закреплена в лампе тремя винтами на изоляционных стойках. При разработке платы учтено, что печатный проводник, соединенный с выводом стока мощного коммутирующего транзистора в микросхеме (DRAIN), служит для него теплоотводом.

Импульсный трансформатор Т1 намотан на магнитопроводе ЕЕ16/8/5. Обмотка I содержит 120 витков провода ПЭЬТЛ-2 диаметром 0,21 мм (индуктивность обмотки - 2 мГн), обмотка II - 17 витков ПЭТВ-2 диаметром 0,1 мм, обмотка III - 20 витков литцендрата 10x0,12 мм. При намотке на каркасе с использованием межобмоточной и межслойной изоляции размещают последовательно первую секцию обмотки I из 60 витков, затем обмотку III и вторую секцию обмотки I из 60 витков, последней - обмотку II. Секции обмотки I соединяют на свободном выводе трансформатора, этот вывод в плату не запаивают. Для получения требуемой индуктивности первичной обмотки потребовалось алмазным надфилем укоротить центральный керн до образования немагнитного зазора 0,17 мм.

Дроссель L1 индуктивностью 0,47... 1 мГн взят от неисправной энергосберегающей лампы. Диоды VD2 и VD3 соединены в общей точке навесным монтажом. Резистор R4 (датчик тока) составлен из двух параллельно соединенных резисторов R4.1 и R4.2 по 2,2 Ома, 0,125 Вт.

Мощная светодиодная лампа
Рис. 3

Конструктивно светодиодная лампа выполнена на основе неисправной компактной люминесцентной лампы мощностью 26 Вт, из которой удалены ЭПРА и спиральный баллон. В оставшемся пластиковом корпусе со стороны крепления теплоотвода выпилено окно шириной 25 мм, куда помещена плата преобразователя так, чтобы печатные проводники и элементы поверхностного монтажа были обращены к теплоотводу, как показано на рис. 3. Края печатной платы шириной 24 мм приклеены нитроклеем в месте соприкосновения с корпусом лампы. К корпусу привинчен теплоотвод диаметром 60 мм и высотой 43 мм, к которому с применением теплопроводящей пасты КПТ-8 четырьмя винтами М2 прижат светодиод EL1. Эффективная охлаждающая поверхность теплоотвода - около 300 см2.

В процессе испытаний проверен режим светодиода EL1: прямое напряжение на нем 18 В при токе 0,52 А. Этот режим оставался стабильным при изменении напряжения питания с помощью лабораторного автотрансформатора в пределах 176...254 В. При необходимости ток светодиода может быть скорректирован подбором резисторов R4.1 и R4.2, образующих датчик тока R4.

При первом включении проконтролированы пиковое значение и форма тока коммутирующего транзистора по падению напряжения на датчике тока - резисторе R4. Форма импульсов тока - пилообразная. Измеренное пиковое значение 0,28 А меньше промоделированного программой максимального значения 0,303 А. В результате подтверждено отсутствие насыщения магнитопровода.

Проверено функционирование преобразователя в режимах короткого замыкания и обрыва нагрузки. Результаты этих испытаний совпали с расчетами по программе. При токе нагрузки 0,2 А преобразователь работает в режиме пропуска одной впадины на частоте 132 кГц. При увеличении тока нагрузки до 0,4 А коммутация происходит на первой впадине, частота увеличивается до 140 кГц. С дальнейшим увеличением тока нагрузки до 0,53 А частота снижается до 105 кГц.

В режиме замыкания нагрузки преобразователь формирует с частотой 13,5 кГц короткие импульсы длительностью чуть менее 2 мкс. Без нагрузки (светодиода) преобразователь поддерживает на выходе напряжение около 20 В, генерируя пачки импульсов с частотой 2,17 кГц.

Измеренный КПД преобразователя - 82 % при напряжении сети 220 В. Измерения показали, что температура микросхемы в установившемся тепловом режиме не превышает 54 °С. В светодиодной лампе (рис. 3) температура корпуса светодиода в установившемся режиме не превышает 62 °С. С учетом теплового сопротивления перехода кристалл-корпус 2,24 °С/Вт можно оценить температуру кристалла 62+9-2,24=82 °С, что намного меньше максимально допустимого значения 150 “С [3] и вполне приемлемо с точки зрения обеспечения долговечности прибора.

Мощная светодиодная лампа
Рис. 4

Для сравнения светодиодной лампы с лампой накаливания мощностью 100 Вт свет обеих ламп с одинакового расстояния направлен на пластину из молочного оргстекла. Как видно на рис. 4, световое пятно от светодиодной лампы, расположенное справа, заметно ярче, чем от лампы накаливания.

Литература

  1. Косенко С. Микросхема HVLED805 для импульсных сетевых блоков питания - Радио, 2012, № 11, с. 40-42.
  2. Косенко С. Расчет ИИП на микросхемах серии VlPer-plus. - Радио. 2012, № 12, с. 19, 20.
  3. SPECIFICATION MODEL: SPHCWTHDD803 WHROJC. - simpex.ch/fileadmin/bereiche/systemkomponen ten/News/24082011/SPHCWTHDD803WHR0JC.pdf.
  4. Off-line LED driver with piimary-sensing HVLED805. - st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/DATASHEET/CD00287280.pdf.

Автор: С. Косенко

Смотрите другие статьи раздела Освещение.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Лабораторная модель прогнозирования землетрясений 30.11.2025

Предсказание землетрясений остается одной из самых сложных задач геофизики. Несмотря на развитие сейсмологии, ученые все еще не могут точно определить момент начала разрушительного движения разломов. Недавние эксперименты американских исследователей открывают новые горизонты: впервые удалось наблюдать микроскопические изменения в контактной зоне разломов, которые предшествуют землетрясению. Группа под руководством Сильвена Барбота обнаружила, что "реальная площадь контакта" - участки, где поверхности разлома действительно соприкасаются - изменяется за миллисекунды до высвобождения накопленной энергии. "Мы открыли окно в сердце механики землетрясений", - отмечает Барбот. Эти изменения позволяют фиксировать этапы зарождения сейсмического события еще до появления традиционных сейсмических волн. Для наблюдений ученые использовали прозрачные акриловые материалы, через которые можно было отслеживать световые изменения в зоне контакта. В ходе искусственного моделирования примерно 30% ко ...>>

Музыка как естественный анальгетик 30.11.2025

Ученые все активнее исследуют немедикаментозные способы облегчения боли. Одним из перспективных направлений становится использование музыки, которая способна воздействовать на эмоциональное состояние и когнитивное восприятие боли. Новое исследование международной группы специалистов демонстрирует, что даже кратковременное прослушивание любимых композиций может значительно снижать болевые ощущения у пациентов с острой болью в спине. В эксперименте участвовали пациенты, обратившиеся за помощью в отделение неотложной помощи с выраженной болью в спине. Им предлагалось на протяжении десяти минут слушать свои любимые музыкальные треки. Уже после этой короткой сессии врачи фиксировали заметное уменьшение интенсивности боли как в состоянии покоя, так и при движениях. Авторы исследования подчеркивают, что музыка не устраняет саму причину боли. Тем не менее, она воздействует на эмоциональный фон пациента, снижает уровень тревожности и отвлекает внимание, что в сумме приводит к субъективном ...>>

Алкоголь может привести к слобоумию 29.11.2025

Проблема влияния алкоголя на стареющий мозг давно вызывает интерес как у врачей, так и у исследователей когнитивного старения. В последние годы стало очевидно, что границы "безопасного" употребления спиртного размываются, и новое крупное исследование, проведенное международной группой ученых, вновь указывает на это. Работы Оксфордского университета, выполненные совместно с исследователями из Йельского и Кембриджского университетов, показывают: даже небольшие дозы алкоголя способны ускорять когнитивный спад. Команда проанализировала данные более чем 500 тысяч участников из британского биобанка и американской Программы миллионов ветеранов. Дополнительно был выполнен метаанализ сорока пяти исследований, в общей сложности включавших сведения о 2,4 миллиона человек. Такой масштаб позволил оценить не только прямую связь между употреблением спиртного и развитием деменции, но и влияние генетической предрасположенности. Один из наиболее тревожных результатов касается людей с повышенным ге ...>>

Случайная новость из Архива

Бетон, работающий как аккумулятор 21.06.2024

Ученые из Кембриджа разработали инновационную технологию, превращающую обычный бетон в мощный аккумулятор, способный изменить будущее строительства. Этот материал обещает превратить здания в огромные батареи, способные хранить и расходовать энергию.

На исследовательском столе в Кембридже лежат цилиндры черного бетона, наполненные жидкостью и оборудованные кабелями. Включение светодиода показывает, как эти блоки способны питать электронику, что демонстрирует потенциал новой технологии.

Современные батареи, основанные на литии, сталкиваются с ограниченностью ресурсов и экологическими проблемами. В отличие от них, углеродно-цементные суперконденсаторы обладают высокой эффективностью зарядки и длительным сроком службы без значительной потери производительности. Это делает их идеальными для использования в различных экологически чистых технологиях.

Один из потенциальных применений новой технологии - создание дорог, способных собирать солнечную энергию и использовать ее для беспроводной зарядки электромобилей в движении. Быстрое высвобождение энергии из суперконденсаторов позволит значительно ускорить процесс зарядки батарей транспортных средств.

На данный момент углеродно-цементные суперконденсаторы способны хранить около 300 ватт-часов на кубический метр, что достаточно для поддержания светодиодной лампы мощностью 10 ватт в течение 30 часов. Этот показатель может существенно увеличиться с развитием технологии и оптимизацией материалов.

Благодаря уникальной электропроводности сажи, объединенной с цементом и водой, создается материал с ветвистой структурой, способной проводить электрический ток. Это открывает новые возможности для интеграции энергосберегающих технологий непосредственно в строительные конструкции.

Исследования в этой области продолжаются, и ученые надеются расширить применение бетонных суперконденсаторов, делая их ключевым элементом будущего устойчивого строительства и инфраструктуры.

Другие интересные новости:

▪ Silicon Power выпускает карточки microSDHC 32 ГБ Class 6

▪ Панорамная камера LG 360 CAM

▪ Датчик изображения типа CMOS с глобальным затвором и расширенным динамическим диапазоном

▪ Обнаружена главная причина любви к алкоголю

▪ Факторы человеческого несчастья

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Радиоприем. Подборка статей

▪ статья Велоплуг. Чертеж, описание

▪ статья Что является причиной язвы желудка? Подробный ответ

▪ статья Бухгалтер-ревизор. Должностная инструкция

▪ статья Габаритные огни инопланетян. Энциклопедия радиоэлектроники и электротехники

▪ статья УКВ приемник в пачке Marlboro. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025