Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Мощная светодиодная лампа. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Освещение

Комментарии к статье Комментарии к статье

При разработке предлагаемого устройства была поставлена задача создания светодиодной лампы, потребляющей от сети 220 В меньше 10 Вт, с большей по сравнению с лампой накаливания мощностью 100 Вт яркостью свечения. Основой преобразователя напряжения блока питания светодиода выбрана микросхема HVLED805 [1]. Она позволяет стабилизировать ток светодиодной нагрузки без использования оптронов, датчиков напряжения и тока в цепи нагрузки, в результате чего блок питания существенно упрощается. Проектирование было облегчено программой автоматизированного расчета преобразователя, о которой подробно рассказано в статье [2].

Мощная светодиодная лампа
Рис. 1 (нажмите для увеличения)

Стабильный ток через примененный светодиод SPHCWTHDD803WHROJC при 9 Вт потребляемой мощности должен быть равен 0,51 А (см. табл. 2 в [3]), что примерно на 10% больше вычисленного программой максимального тока 0,45 А. После увеличения предложенного программой типоразмера магнитопровода с ЕЕ13 до ЕЕ16 необходимо проверить, что преобразователь сможет обеспечить требуемый режим светодиода. Убедиться в этом позволит контроль параметров изготовленного устройства. Для корректирования режима преобразователя потребуется заново пересчитать сопротивления резисторов в делителе импульсного напряжения, подаваемого на вывод DMG микросхемы, а также датчика тока. Для этого необходимо воспользоваться расчетными формулами из справочного листка [1] или технического описания микросхемы [4]. Также можно применить приложенную к статье разработанную автором электронную таблицу Iamp805.xls. Такой откорректированный результат проектирования преобразователя для питания светодиода SPHCWTHDD803WHROJC стабилизированным током 0,51 А иллюстрирует принципиальная схема, показанная на рис. 1.

Терморезистор RK1 уменьшает импульс тока в момент включения в сеть. Диодный мост VD1 выпрямляет напряжение сети Конденсаторы С1 и С2 сглаживают пульсации выпрямленного напряжения. Эти конденсаторы и дроссель L1 образуют фильтр, который подавляет импульсные помехи из питающей сети, а также препятствует проникновению в нее высокочастотных пульсаций, создаваемых преобразователем. Импульсный трансформатор Т1 имеет одну первичную обмотку (I) и две вторичные (II и III). Первичная (I) зашунтирована цепью из встречно-последовательно соединенных защитного диода VD2 и обычного VD3, которая ограничивает напряжение на этой обмотке и тем самым защищает от пробоя выходной мощный полевой транзистор микросхемы HVLED805 (DA1). Исток этого транзистора (выводы 1 и 2) соединен с общим проводом микросхемы (вы вод 4) через резистор R4, выполняющий функцию датчика тока.

Обмотка II трансформатора Т1 использована для питания микросхемы DA1. Выпрямленное диодом VD4 и сглаженное конденсатором С6 напряжение подано на вывод питания VCC. Резистор R5 ограничивает амплитуду импульсов тока через диод VD4. Также сигнал с обмотки II через резисторный делитель R1R2 подается на вывод 6 микросхемы DA1. Обрабатывая этот сигнал, микросхема может управлять напряжением на светодиоде EL1 и текущим через него током, о чем рассказано в статье [1].

Обмотка III использована для питания светодиода EL1. Напряжение с этой обмотки выпрямляет диод VD5, высокочастотные пульсации подавляет конденсатор С8, низкочастотные - С9. Резистор R6 - минимальная нагрузка блока питания. Цепь частотной компенсации R3C3C4 предотвращает паразитную генерацию преобразователя на частотах выше основной. Конденсатор С5, подключенный к выводу 5 микросхемы DA1, использован дли стабилизации тока через светодиод EL1, о чем также рассказано в статье [1].

Мощная светодиодная лампа
Рис. 2

Преобразователь смонтирован на печатной плате (рис. 2) из односторонне фольгированного стеклотекстолита толщиной 1,2 мм. Плата рассчитана на элементы для поверхностного монтажа типоразмера 0805 и элементы, монтируемые в отверстия. Она закреплена в лампе тремя винтами на изоляционных стойках. При разработке платы учтено, что печатный проводник, соединенный с выводом стока мощного коммутирующего транзистора в микросхеме (DRAIN), служит для него теплоотводом.

Импульсный трансформатор Т1 намотан на магнитопроводе ЕЕ16/8/5. Обмотка I содержит 120 витков провода ПЭЬТЛ-2 диаметром 0,21 мм (индуктивность обмотки - 2 мГн), обмотка II - 17 витков ПЭТВ-2 диаметром 0,1 мм, обмотка III - 20 витков литцендрата 10x0,12 мм. При намотке на каркасе с использованием межобмоточной и межслойной изоляции размещают последовательно первую секцию обмотки I из 60 витков, затем обмотку III и вторую секцию обмотки I из 60 витков, последней - обмотку II. Секции обмотки I соединяют на свободном выводе трансформатора, этот вывод в плату не запаивают. Для получения требуемой индуктивности первичной обмотки потребовалось алмазным надфилем укоротить центральный керн до образования немагнитного зазора 0,17 мм.

Дроссель L1 индуктивностью 0,47... 1 мГн взят от неисправной энергосберегающей лампы. Диоды VD2 и VD3 соединены в общей точке навесным монтажом. Резистор R4 (датчик тока) составлен из двух параллельно соединенных резисторов R4.1 и R4.2 по 2,2 Ома, 0,125 Вт.

Мощная светодиодная лампа
Рис. 3

Конструктивно светодиодная лампа выполнена на основе неисправной компактной люминесцентной лампы мощностью 26 Вт, из которой удалены ЭПРА и спиральный баллон. В оставшемся пластиковом корпусе со стороны крепления теплоотвода выпилено окно шириной 25 мм, куда помещена плата преобразователя так, чтобы печатные проводники и элементы поверхностного монтажа были обращены к теплоотводу, как показано на рис. 3. Края печатной платы шириной 24 мм приклеены нитроклеем в месте соприкосновения с корпусом лампы. К корпусу привинчен теплоотвод диаметром 60 мм и высотой 43 мм, к которому с применением теплопроводящей пасты КПТ-8 четырьмя винтами М2 прижат светодиод EL1. Эффективная охлаждающая поверхность теплоотвода - около 300 см2.

В процессе испытаний проверен режим светодиода EL1: прямое напряжение на нем 18 В при токе 0,52 А. Этот режим оставался стабильным при изменении напряжения питания с помощью лабораторного автотрансформатора в пределах 176...254 В. При необходимости ток светодиода может быть скорректирован подбором резисторов R4.1 и R4.2, образующих датчик тока R4.

При первом включении проконтролированы пиковое значение и форма тока коммутирующего транзистора по падению напряжения на датчике тока - резисторе R4. Форма импульсов тока - пилообразная. Измеренное пиковое значение 0,28 А меньше промоделированного программой максимального значения 0,303 А. В результате подтверждено отсутствие насыщения магнитопровода.

Проверено функционирование преобразователя в режимах короткого замыкания и обрыва нагрузки. Результаты этих испытаний совпали с расчетами по программе. При токе нагрузки 0,2 А преобразователь работает в режиме пропуска одной впадины на частоте 132 кГц. При увеличении тока нагрузки до 0,4 А коммутация происходит на первой впадине, частота увеличивается до 140 кГц. С дальнейшим увеличением тока нагрузки до 0,53 А частота снижается до 105 кГц.

В режиме замыкания нагрузки преобразователь формирует с частотой 13,5 кГц короткие импульсы длительностью чуть менее 2 мкс. Без нагрузки (светодиода) преобразователь поддерживает на выходе напряжение около 20 В, генерируя пачки импульсов с частотой 2,17 кГц.

Измеренный КПД преобразователя - 82 % при напряжении сети 220 В. Измерения показали, что температура микросхемы в установившемся тепловом режиме не превышает 54 °С. В светодиодной лампе (рис. 3) температура корпуса светодиода в установившемся режиме не превышает 62 °С. С учетом теплового сопротивления перехода кристалл-корпус 2,24 °С/Вт можно оценить температуру кристалла 62+9-2,24=82 °С, что намного меньше максимально допустимого значения 150 “С [3] и вполне приемлемо с точки зрения обеспечения долговечности прибора.

Мощная светодиодная лампа
Рис. 4

Для сравнения светодиодной лампы с лампой накаливания мощностью 100 Вт свет обеих ламп с одинакового расстояния направлен на пластину из молочного оргстекла. Как видно на рис. 4, световое пятно от светодиодной лампы, расположенное справа, заметно ярче, чем от лампы накаливания.

Литература

  1. Косенко С. Микросхема HVLED805 для импульсных сетевых блоков питания - Радио, 2012, № 11, с. 40-42.
  2. Косенко С. Расчет ИИП на микросхемах серии VlPer-plus. - Радио. 2012, № 12, с. 19, 20.
  3. SPECIFICATION MODEL: SPHCWTHDD803 WHROJC. - simpex.ch/fileadmin/bereiche/systemkomponen ten/News/24082011/SPHCWTHDD803WHR0JC.pdf.
  4. Off-line LED driver with piimary-sensing HVLED805. - st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/DATASHEET/CD00287280.pdf.

Автор: С. Косенко

Смотрите другие статьи раздела Освещение.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Луна поглощает воздух нашей планеты 22.01.2026

Взаимодействие Земли и Луны оказывается не только гравитационным. Новые исследования показывают, что наш естественный спутник постепенно "поглощает" крошечные фрагменты атмосферы Земли, используя для этого солнечный ветер и магнитное поле нашей планеты. Этот процесс исследователи называют космическим каннибализмом. Еще во времена миссий "Аполлон" в 1970-х годах ученые обнаружили в лунном реголите необычные следы воды, углекислого газа, гелия и азота. Стало ясно, что часть этих веществ, включая ионы азота, попала на Луну из верхних слоев земной атмосферы. Долгое время считалось, что подобная передача могла происходить только до того, как Земля сформировала свое магнитное поле. Магнитосфера, как считалось, должна была защищать планету и блокировать утечку атмосферных частиц в космос. Новое моделирование показало, что это представление неверно. Ученые объединили данные лунных образцов с компьютерными моделями и выяснили, что поток ионов усиливается, когда Луна проходит через так ...>>

Игровой компьютер Asus ROG G1000 22.01.2026

Компания Asus представила ROG G1000 - устройство, которое сочетает мощнейшие комплектующие с уникальной системой визуализации, превращая корпус компьютера в полноценный элемент шоу. Главной особенностью новинки стали три голографических вентилятора AniMe Holo, установленных в отдельных стеклянных камерах. Главный вентилятор диаметром 380 мм оснащен от 680 до 720 светодиодов, а два дополнительных вентилятора размером 215 мм имеют по 384-404 светодиода. Они способны воспроизводить голографические изображения, анимации и видео в форматах MP4, GIF, JPEG и PNG, создавая эффект "живых" панелей внутри корпуса. Представители Asus подчеркивают, что эти вентиляторы не участвуют в охлаждении и предназначены исключительно для визуальных эффектов. Управление анимациями осуществляется через программу Armoury Crate, позволяющую пользователю персонализировать отображение по собственному вкусу. Для поддержания оптимальной температуры компонентов ROG G1000 оснащен 420-мм жидкостным охладителем ...>>

Дефицит витамина B12 удваивает риск депрессии 21.01.2026

Питание и баланс микроэлементов играют ключевую роль не только для физического, но и для психического здоровья. Недавние исследования ирландских ученых показывают, что недостаток витамина B12 способен значительно повышать риск развития депрессии у пожилых людей, влияя на работу нервной системы и общее самочувствие. Витамин B12 необходим для правильного формирования эритроцитов, поддержания нервной системы и синтеза ДНК. Его дефицит может проявляться широким спектром симптомов: усталостью, слабостью, запорами, потерей аппетита и веса. У некоторых людей наблюдаются нарушения памяти, дезориентация и снижение когнитивных функций, доходящее до деменции. Особое внимание ученых привлекает анемия, которая является одним из самых опасных последствий недостатка B12. Она может возникать также при дефиците других витаминов группы B, включая фолиевую кислоту, и требует ранней диагностики и коррекции для предотвращения необратимых изменений в организме. Новое исследование показало, что у по ...>>

Случайная новость из Архива

Разработан уникальный метод исследования генов 24.07.2019

Британские ученые разработали новый вычислительный способ изучения генов для присваивания определенных функций молекулам ДНК с неизвестным значением.

Исследователи из университета Кента изучили организм из 473 генов бактерии (Mycoplasma mycoides), которая размножается в богатой питательными веществами среде. Назначение почти трети генов (149) раньше не могли установить. Новый уникальный вычислительный способ помог присвоить специальные функции 66 генам. Ученые установили, что многие из этих участков переносят питательные вещества и выводят остатки из клетки.

"Это отражает потребности организма с минимальным геномом в богатой питательными веществами среде. Если организм получает их в изобилии, то ему не нужно иметь большое количество генов, выполняющих метаболические функции", - подчеркнул профессор университета Кента Марк Васс.

Ученые утверждают, что "минимальный геном состоит из набора генов, необходимых для различных форм жизнедеятельности, и второго набора генов-посредников, обеспечивающих жизнь в определенной среде".

Другие интересные новости:

▪ Драйверы светодиодов мощностью 12 Вт от компании TDK-Lambda

▪ Гибкая перезаписываемая память

▪ Регуляторы VIPER26K со встроенным MOSFET 1050 В

▪ Квантовые новинки IBM

▪ Мобильные платформы Snapdragon 665, Snapdragon 730 и Snapdragon 730G

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Альтернативные источники энергии. Подборка статей

▪ статья Эмилиано Сапата. Знаменитые афоризмы

▪ статья Какой напиток изобрели немцы, лишившись поставок ингредиентов для Кока-Колы? Подробный ответ

▪ статья Работа на перфорировально-биговальной машине. Типовая инструкция по охране труда

▪ статья Сигнализаторы уровня жидкости. Энциклопедия радиоэлектроники и электротехники

▪ статья Линейный выход для сабвуфера. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2026