Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Светодинамическая светодиодная лампа - из КЛЛ. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Освещение

Комментарии к статье Комментарии к статье

Некоторые компактные люминесцентные лампы (КЛЛ) снабжены дополнительным матовым светорассеивателем, стилизованным под классическую лампу накаливания. Если такая КЛЛ вышла из строя, ее корпус можно использовать для сборки простой светодиодной осветительной лампы или сделать из нее светодинамическую или автомат световых эффектов.

Такой доработке подверглась КЛЛ фирмы Osram (рис. 1). Ее особенность - светорас-сеиватель снимается и устанавливается в специальный круговой паз без больших усилий.

Светодинамическая светодиодная лампа - из КЛЛ
Рис. 1. КЛЛ фирмы Osram

Собственно лампа и ее электронная начинка аккуратно удалены. Сначала изготавливают сетевой встраиваемый блок питания (БП) с балластными конденсаторами, схема которого показана на рис. 2.

Светодинамическая светодиодная лампа - из КЛЛ
Рис. 2. Схема блока питания

Ёмкость конденсаторов С1 и С2 выбрана такой, чтобы обеспечить выходной ток БП 140...150 мА. Резистор R2 ограничивает бросок тока при подаче сетевого напряжения, а через резистор R1 конденсаторы разряжаются после выключения лампы. Плавкий термопредохранитель F1 защищает БП от перегрева при неблагоприятных обстоятельствах. Переменный ток выпрямляет диодный мост VD1-VD4, а конденсатор С3 сглаживает пульсации выпрямленного напряжения. На транзисторе VT1 и стабилитроне VD5 собран параметрический стабилизатор напряжения с выходным напряжением 12,5...13 В.

Для подключения нагрузки применено гнездо XS1. Это позволило оперативно изменять функциональное назначение лампы простой заменой модулей, снабженных ответным разъемом. Всего таких модулей было изготовлено три: осветительный, светодинамический и для световых эффектов. Во всех случаях в качестве источника света применены светодиодные ленты с номинальным напряжением 12 В. В первом случае число ячеек светодиодной ленты выбрано так, чтобы ее номинальный ток был немного больше максимального выходного тока БП. Поэтому выходное напряжение БП меньше напряжения стабилизации, и весь ток потребляет светодиодная лента. В остальных случаях часть тока потребляет сам БП.

Плавкий предохранитель F1 (температура срабатывания 125 оС) был установлен в КЛЛ, он припаян к цоколю лампы (XP1). Балластные конденсаторы должны быть рассчитаны на работу при переменном напряжении 250 В, они извлечены из импульсных БП компьютеров, а их число может быть и другим, главное, чтобы суммарная емкость соответствовала указанной на схеме. Конденсаторы склеены вместе и размещены в цоколе лампы (придется подобрать такие, чтобы они входили в него). Там же расположены резисторы R1 и R2 (МЛТ или импортные), причем резистор R2 составлен из двух одноваттных сопротивлением по 20 Ом, соединенных параллельно, и термопредохранитель Fl. Остальные элементы размещены на печатной плате из фольгированного с одной стороны стеклотекстолита толщиной 1...1,5 мм, чертеж которой показан на рис. 3. Применен резистор МЛТ (R3), оксидный конденсатор С3 - импортный. Стабилитрон - любой маломощный (в том числе и двуханодный) на напряжение стабилизации 12...12,5 В. Транзистор КТ837Т заменим любым из серии КТ818 в корпусе ТО-220, чтобы он мог рассеивать без теплоотвода мощность до 1,5 Вт. Гнездо XS1 - шестиконтактное двухрядное с шагом 2,54 мм (PBD-6). Следует отметить, что гнездо в БП и вилка у модулей не имеют ключа. Поэтому вставлять их можно, не обращая внимания на его отсутствие, главное, чтобы все контакты вилки попали в отверстия розетки. В любом случае плюсовая линия питающего напряжения будет на средних контактах, а минусовая - на крайних. Так надо подключать линии питания и у модулей.

Светодинамическая светодиодная лампа - из КЛЛ
Рис. 3. Печатная плата

Плата БП с помощью клея закреплена в верней части цоколя от КЛЛ (рис. 4) и проводами соединена с остальными элементами БП. После проверки работоспособности БП цоколь собирают, а оставшиеся от баллона КЛЛ отверстия заклеивают герметиком или клеем (рис. 5). Розетка XP1 необязательно должна выступать над слоем герметика и может находиться с ним на одном уровне.

Светодинамическая светодиодная лампа - из КЛЛ
Рис. 4. Плата БП, закрепленная в верней части цоколя от КЛЛ

Светодинамическая светодиодная лампа - из КЛЛ
Рис. 5. Оставшиеся от баллона КЛЛ отверстия заклеивают герметиком или клеем

Схема первого модуля (осветительного) показана на рис. 6. Она содержит светодиодную ленту, содержащую несколько ячеек с суммарным номинальным потребляемым током, о котором сказано ранее. К пластмассовой пластине толщиной 1,5 мм размерами 20x55 мм (зависит от габаритов светорассеивателя) приклеены вилка ХР1 (PLD-6) и светодиодная лента (рис. 7). Вилка вставляется в гнездо XS1 БП и достаточно надежно в нем фиксируется, сверху надевают светорассеиватель. Поскольку мощность лампы не превышает 1,8 Вт, ее яркость невелика, и ее можно использовать в подсобных помещениях или для дежурного освещения.

Светодинамическая светодиодная лампа - из КЛЛ
Рис. 6. Схема первого модуля (осветительного)


Рис. 7. Вилка и светодиодная лента

Второй модуль предназначен для создания световых эффектов, его схема показана на рис. 8. На трех логических элементах DD1.1-DD1.3 собран трехфазный мультивибратор с частотой следования импульсов несколько долей герца, который управляет транзисторами VT1-VT3. Импульсы появляются на выходах логических элементов друг за другом с задержкой во времени. Поэтому кристаллы разных цветов включаются поочередно. Чтобы при включении яркость нарастала относительно плавно, установлены конденсаторы С2, С4 и С6. Частота следования импульсов зависит от постоянной времени цепей R1C1, R3C3и R5C5. Изменяя номиналы этих элементов в широких пределах, можно изменять и частоту следования импульсов.

Светодинамическая светодиодная лампа - из КЛЛ
Рис. 8. Схема второго модуля (нажмите для увеличения)

Все элементы второго модуля установлены на плате из фольгированного с одной стороны стеклотекстолита толщиной 1...1,5 мм, ее чертеж показан на рис. 9. Применены резисторы Р1-4, С2-23, оксидные конденсаторы - импортные низкопрофильные, чтобы плата могла свободно проходить через горловину светорассеивателя. Транзисторы PN2222 можно заменить отечественными серии КТ503. Вид смонтированной платы показан на рис. 10.

Светодинамическая светодиодная лампа - из КЛЛ
Рис. 9. Чертеж платы второго модуля

Светодинамическая светодиодная лампа - из КЛЛ
Рис. 10. Вид смонтированной платы

В этом модуле применена лента с номинальным напряжением 12 В, содержащая три ячейки, в каждой из которых установлены по три трехцветных светодиода. Лента закручена вокруг платы и закреплена по ее краю клеем. Суммарный потребляемый ток кристаллами одного цвета - 45...55 мА. Поскольку не все светодиоды включены одновременно, суммарный ток ленты не превышает 150 мА, т. е. максимального выходного тока БП.

Если свечение этой лампы на основе трехфазного мультивибратора может показаться монотонным, схему модуля можно изменить, превратив трехфазный мультивибратор в три независимых генератора. Для этого следует устранить связь между логическими элементами, перерезав соответствующие печатные проводники. На рис. 8 они показаны крестами красного цвета, на рис. 9 - более тонкими линиями. Затем отрезками изолированного провода делают соединения, показанные на рис. 8 штриховыми линиями.

Третий модуль - светодинамический. У него источник света - также отрезок светодиодной ленты с трехцветными светодиодами. Цвет свечения лампы с этим модулем будет изменяться в такт с музыкой или другими звуками, а также с их спектральным составом. Схема модуля показана на рис. 11 . В его состав входят микрофонный усилитель на ОУ DA1.1 и три активных полосовых фильтра на ОУ DA1.2-DA1.4. На ОУ DA1.2 собран фильтр с центральной частотой около 3 кГц, на ОУ DA1 .3 - с частотой около 1 кГц, на ОУ DA1.4 - с частотой около 150 Гц. Коэффициент усиления активных фильтров - 20...25 дБ. Сигнал с выхода фильтров поступает соответственно на транзисторы VT1-VT3. В базовые цепи транзисторов включены цепи автоматического смещения C9R11, C10R12 и C11R13. Через резисторы R11-R13 в базы транзисторов поступает ток, поэтому транзисторы приоткрываются и через светодиоды протекает небольшой ток, вызывая их слабое свечение. При появлении на выходе фильтров сигнала ток начинает протекать через конденсаторы С9-С11, транзисторы открываются больше и светодиоды начинают светить ярче. Конденсаторы не успевают быстро разрядиться через "свои" резисторы, поэтому на них появляется напряжение, которое закрывает транзисторы. Чем больше напряжение сигнала, тем больше закрывающее напряжение. При этом происходит сжатие динамического диапазона выходных сигналов, что поддерживает динамическое изменение яркости светодиодов.

Светодинамическая светодиодная лампа - из КЛЛ
Рис. 11. Схема третьего модуля (нажмите для увеличения)

Чертеж платы третьего модуля показан на рис. 12, а вид смонтированной платы - на рис. 13. Применены керамические импортные или отечественные (К10-17) конденсаторы, остальные элементы - как в предыдущем модуле. Светодиодная лента закручена вокруг платы (рис. 14) и закреплена клеем. Чтобы модуль работал нормально, в светорассеивателе придется сделать акустические отверстия.

Светодинамическая светодиодная лампа - из КЛЛ
Рис. 12. Чертеж платы третьего модуля

Светодинамическая светодиодная лампа - из КЛЛ
Рис. 13. Вид смонтированной платы

Светодинамическая светодиодная лампа - из КЛЛ
Рис. 14. Светодиодная лента

Налаживание начинают с подборки резистора R1 (а при необходимости и R3). С его помощью устанавливают на выходе ОУ DA1.1 постоянное напряжение 5...6 В. Такое же напряжение должно быть и на выходе остальных ОУ. Подборкой резистора R4 устанавливают желаемое усиление микрофонного усилителя. Резисторами R11-R13 устанавливают начальный ток транзисторов. Налаживать и проверять работоспособность всех модулей следует только совместно с лабораторным БП напряжением 12 В, поскольку БП лампы имеет гальваническую связь с сетью!

Следует отметить, что предложенная конструкция доработанной лампы позволяет подключать к ней модули самого различного назначения, например, с датчиком движения и пр.

Автор: И. Нечаев

Смотрите другие статьи раздела Освещение.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Оптимальная продолжительность сна 12.11.2025

Сон играет ключевую роль в поддержании здоровья, когнитивных функций и общего самочувствия. Несмотря на широко распространенный стереотип о восьмичасовом сне, последние исследования показывают, что оптимальная продолжительность сна для большинства здоровых взрослых ближе к семи часам. Эволюционный биолог из Гарварда, Дэниел Э. Либерман, утверждает, что традиционная норма восьми часов сна - это скорее культурное наследие индустриальной эпохи, чем биологическая необходимость. По его словам, полевые исследования, проведенные в сообществах, не использующих электричество, показывают, что средняя продолжительность сна составляет 6-7 часов, что значительно отличается от общепринятого стандарта. Современные эпидемиологические данные подтверждают этот взгляд. Исследования выявили так называемую "U-образную кривую" зависимости между продолжительностью сна и рисками для здоровья. Минимальные показатели заболеваемости и смертности наблюдаются именно у людей, спящих около семи часов в сутки. ...>>

Дефицит кислорода усиливает выброс закиси азота 12.11.2025

Парниковые газы играют ключевую роль в изменении климата, а закись азота (N2O) - один из наиболее опасных среди них. Этот газ не только втрое сильнее углекислого газа в удержании тепла, но и разрушает озоновый слой. Недавнее исследование американских ученых показало, что микробы в зонах с низким содержанием кислорода активно производят N2O, усиливая глобальные климатические риски. Команда из Университета Пенсильвании изучала прибрежные воды у Сан-Диего и провела наблюдения на глубинах от 40 до 120 метров в Восточной тропической северной части Тихого океана - одной из крупнейших зон дефицита кислорода. Исследователи сосредоточились на том, как морские микроорганизмы превращают нитраты в закись азота. В ходе работы выяснилось, что существует два пути образования N2O. Один путь начинается с нитрата, другой - с нитрита. На первый взгляд более короткий путь должен быть эффективнее, однако микробы, использующие нитрат, продуцируют больше газа, поскольку этот "сырьевой" источник более д ...>>

Омега-3 помогают молодым кораллам выживать 11.11.2025

Сохранение коралловых рифов становится все более актуальной задачей в условиях глобального изменения климата. Молодые кораллы особенно уязвимы на ранних стадиях развития, когда стрессовые условия и нехватка питательных веществ могут привести к высокой смертности. Недавнее исследование ученых из Технологического университета Сиднея показывает, что специальные пищевые добавки способны существенно повысить выживаемость личинок кораллов. В ходе работы исследователи разработали особый состав "детского питания" для коралловых личинок. В него вошли масла, богатые омега-3 жирными кислотами, а также важные стерины, необходимые для формирования клеточных мембран. Личинки, получавшие эти добавки, развивались быстрее, становились крепче и демонстрировали более высокую устойчивость к стрессовым факторам. Особое внимание ученые уделили липидам. Анализ показал, что личинки активно усваивают эти вещества, что напрямую влияет на их жизнеспособность. Стерины, содержащиеся в корме, повышают устойчи ...>>

Случайная новость из Архива

Сверхзвуковая ракету X-60A 16.03.2019

Исследовательская Лаборатория ВВС США совместно с компанией Generation Orbit Launch Services начала работу над новым концептом сверхзвуковой ракеты под названием X-60A, которая представляет собой совершенно новый подход к осуществлению полета ракеты при скорости, примерно в восемь раз превышающий скорость света. Известно, что предварительный анализ технического дизайна ракеты уже успешно завершился и обе команды приступили к непосредственной технической реализации своей новой ракеты, которая планируется к первому тестовому запуску примерно в 2020 году - впрочем, тут могут быть многие другие проблемные факторы.

Одним из таких проблемных факторов является чрезмерно высокая стоимость изготовления и проработки тех или иных аспектов такой сверхзвуковой ракеты на основе жидкого топлива - уже сейчас представители ВВС США заявили о том, что оформили заявку на использование космического порта в Джексонвилле, Флорида для того, чтобы хотя бы отчасти минимизировать разрывы бюджета. Сама ракета X-60A, ранее известная как GOLauncher-1, разрабатывается при активном участии специалистов по авиации и космических систем из компании Generation Orbit Launch Service в рамках специальной программы под названием Small Business.

Именно благодаря такой кампании и становится возможным экспериментировать с различными видами технической реализации ракеты, которая также становится действительно интересной и в отношении превышения скорости света - ракета должна, по заявлению разработчиков, уметь перемещаться на скорости Mach 8, что примерно соответствует показателю в 9,800 км/ч, а это и является прекрасным примером преодоления скорости света.

Другие интересные новости:

▪ Магнитная система, превращающая тепло в механическое движение

▪ Инопланетянам лучше поторопиться

▪ Предсказана супер-вспышка на Солнце

▪ Подшипники, не требующие смазки

▪ Релиз мемристорных чипов отсрочен

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Заводские технологии на дому. Подборка статей

▪ статья Шалаш вашего сада. Советы домашнему мастеру

▪ статья Какую сказочную роль Георгий Милляр сыграл почти без грима? Подробный ответ

▪ статья Автомойщик. Должностная инструкция

▪ статья Электронный блок автомобильного экономайзера. Энциклопедия радиоэлектроники и электротехники

▪ статья Автоматический переключатель телевизионных входов. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025