Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Цветомузыкальное устройство на лампах дневного света. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Цветомузыкальные установки

Комментарии к статье Комментарии к статье

В литературе было опубликовано несколько описаний различных приставок к усилителям низкой частоты, позволяющих сопровождать речь и музыку цветовыми эффектами. Но все эти конструкции обладают рядом недостатков. Один из них заключается в том, что лампы накаливания, которые используются на выходе цветомузыкальных установок, имеют неравномерный спектр светового излучения, поэтому даже при полном накале спектр лампы в области синего света значительно слабее, чем красного. С изменением накала меняется не только интенсивность излучения, но и его спектральный состав. Чтобы получить одинаковую яркость различных цветов, необходимо применять лампы разной мощности. К тому же лампы накаливания имеют сильную нелинейность зависимости между излучаемой световой мощностью и потребляемой электрической.

Второй недостаток устройств подобного типа - малая выходная мощность. Действительно, чтобы зажечь три лампы по 100 вт, требуется очень мощный усилитель и соответствующий источник питания. Причем, в случае использования усилителя переменного тока возникает необходимость применения трех мощных выходных трансформаторов.

И, наконец, третий недостаток - эффект мигания. Он заключается в том, что интенсивность излучения каждого канала, а значит и суммарная интенсивность пропорциональны громкости звука. Это приводит к очень резким колебаниям силы света, неблагоприятно действующим на зрителей.

Предлагаемая конструкция приставки для цветомузыки позволяет если не полностью устранить, то в значительной мере уменьшить указанные недостатки. Схема установки здесь.

Первая проблема решается путем замены ламп накаливания лампами дневного света, спектральный состав светового излучения которых практически не зависит от интенсивности. Метод управления лампой дневного света при помощи электромагнитного поля высокой частоты (порядка 20 МГц) неприменим из-за создаваемых радиопомех, магнитные же усилители пока мало применяются радиолюбителями. Поэтому был выбран метод управления интенсивностью свечения с помощью усилителя постоянного тока.

Выходная лампа усилителя должна иметь анодный ток порядка 0,24 - 0,3 А. Этому требованию удовлетворяет лампа ГУ-50 или две соединенные параллельно лампы 6П3С.

Проблема постоянной суммарной интенсивности света может быть решена несколькими методами:

  • вводится белый фоновый свет, яркость которого падает при увеличении яркости цветных источников;
  • в качестве фона используется один из основных цветов, например, зеленый, которому придается доминирующее значение; в режиме молчания его интенсивность максимальна. Когда возрастает интенсивность других цветов, фоновый цвет слабеет;
  • все три основных цвета (красный, зеленый, синий) в режиме молчания имеют половину максимальной интенсивности. Повышение напряжения в каком-либо участке спектра приводит к увеличению яркости соответствующего цвета и одновременному уменьшению яркости двух других, так, чтобы суммарная интенсивность света оставалась постоянной. При создании описываемой системы был выбран последний метод.

Предварительный усилитель низкой частоты и фильтры звуковых частот выполнены по обычным схемам, поэтому описания их и принципиальные схемы в данной статье не приводятся.

Выходная часть, схема которой приведена на рисунке, состоит из трех одинаковых каналов, в каждый из которых входит диодный детектор (Д103), дифференциальный усилитель (6Н1П), оконечный усилитель (ГУ-50) и люминесцентная лампа типа ЛДЦ-30, окрашенная в один из цветов. Выпрямители общие для всех трех каналов.

Напряжение звуковой частоты с выхода фильтра подается на соответствующий детектор. Постоянная составляющая напряжения на выходе детектора, примерно равная амплитуде входного напряжения, усиливается дифференциальным усилителем (Л4, Л5 или Л6). С выходов каждого усилителя снимаются два напряжения, одно из которых увеличивается, другое уменьшается пропорционально входному напряжению, подаваемому на детектор. Эти напряжения и компенсирующее напряжение -180 в поступают на составленные из резисторов сумматоры, выходы которых присоединены к управляющим сеткам оконечных ламп ГУ-50. На каждый сумматор подаются увеличивающееся напряжение своего канала и уменьшающиеся напряжения двух других каналов. В итоге для интенсивности свечения люминесцентной лампы каждого канала можно получить выражение:

Ia = K (2a - b - c) + Io
Ib = K (-a -+2b - c) + Io
Ic = K (-a - b + 2c) + Io

где К - общий коэффициент усиления; Io - интенсивность свечения люминесцентной лампы при отсутствии сигнала.

Из полученных выражений видно, что суммарная интенсивность свечения всех трех ламп Ia + Ib + Ic = 3 Io постоянна и не зависит от входных напряжений a, b и с.

Сопротивления резисторов каждого сумматора выбираются так, чтобы рабочая точка Iо при отсутствии сигнала соответствовала середине линейного участка характеристики, выражающей зависимость яркости свечения люминесцентной лампы от потребляемой мощности, что соответствует току через лампу, равному 150 мА для ламп типа ЛДЦ-30. Напряжение смещения на управляющих сетках ГУ-50 должно быть при этом равно -30 в.

Лампы ГУ-50 включены триодами с целью уменьшения их внутреннего сопротивления и предотвращения перегрева экранных сеток ламп в случае, если лампа ЛДЦ-30 по какой-либо причине не зажжется. Для надежного зажигания ламп ЛДЦ-30 кроме постоянного напряжения +300 В на них дополнительно подается пульсирующее напряжение с амплитудой -360 в. Напряжение накала на отрицательный электрод каждой люминесцентной лампы подается от отдельной накальной обмотки. Постоянное напряжение 300 в для питания всей установки подается от бестрансформаторного выпрямителя, выполненного на мощных диодах Д302, включенных по мостовой схеме. Нити накала всех усилительных ламп соединены последовательно и питаются от сети через конденсатор емкостью 10 мкФ.

Силовой трансформатор используется только для получения напряжения накала люминесцентных ламп и отрицательных напряжений -180 в и -360 в. Такая схема питания позволяет применить силовой трансформатор мощностью порядка 40 вт. Ввиду использования бестрансформаторного выпрямителя подключение цветомузыкальной приставки к радиоприемнику или магнитофону должно производиться через трансформатор низкой частоты. При напряжении сети 127 В применяются люминесцентные лампы, рассчитанные на 127 в.

В статье не указывается, какие выбираются цвета и каким частотам звукового диапазона они соответствуют, так как понятие низких, средних и высоких частот существенно зависит от звуковой программы. Большинство зрителей высказывается за общепринятое соответствие: низкие частоты - красный цвет, средние - зеленый или желтый, а высокие - синий.

Автор: Р. Терентьев, В. Псурцев; Публикация: cxem.net

Смотрите другие статьи раздела Цветомузыкальные установки.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Лабораторная модель прогнозирования землетрясений 30.11.2025

Предсказание землетрясений остается одной из самых сложных задач геофизики. Несмотря на развитие сейсмологии, ученые все еще не могут точно определить момент начала разрушительного движения разломов. Недавние эксперименты американских исследователей открывают новые горизонты: впервые удалось наблюдать микроскопические изменения в контактной зоне разломов, которые предшествуют землетрясению. Группа под руководством Сильвена Барбота обнаружила, что "реальная площадь контакта" - участки, где поверхности разлома действительно соприкасаются - изменяется за миллисекунды до высвобождения накопленной энергии. "Мы открыли окно в сердце механики землетрясений", - отмечает Барбот. Эти изменения позволяют фиксировать этапы зарождения сейсмического события еще до появления традиционных сейсмических волн. Для наблюдений ученые использовали прозрачные акриловые материалы, через которые можно было отслеживать световые изменения в зоне контакта. В ходе искусственного моделирования примерно 30% ко ...>>

Музыка как естественный анальгетик 30.11.2025

Ученые все активнее исследуют немедикаментозные способы облегчения боли. Одним из перспективных направлений становится использование музыки, которая способна воздействовать на эмоциональное состояние и когнитивное восприятие боли. Новое исследование международной группы специалистов демонстрирует, что даже кратковременное прослушивание любимых композиций может значительно снижать болевые ощущения у пациентов с острой болью в спине. В эксперименте участвовали пациенты, обратившиеся за помощью в отделение неотложной помощи с выраженной болью в спине. Им предлагалось на протяжении десяти минут слушать свои любимые музыкальные треки. Уже после этой короткой сессии врачи фиксировали заметное уменьшение интенсивности боли как в состоянии покоя, так и при движениях. Авторы исследования подчеркивают, что музыка не устраняет саму причину боли. Тем не менее, она воздействует на эмоциональный фон пациента, снижает уровень тревожности и отвлекает внимание, что в сумме приводит к субъективном ...>>

Алкоголь может привести к слобоумию 29.11.2025

Проблема влияния алкоголя на стареющий мозг давно вызывает интерес как у врачей, так и у исследователей когнитивного старения. В последние годы стало очевидно, что границы "безопасного" употребления спиртного размываются, и новое крупное исследование, проведенное международной группой ученых, вновь указывает на это. Работы Оксфордского университета, выполненные совместно с исследователями из Йельского и Кембриджского университетов, показывают: даже небольшие дозы алкоголя способны ускорять когнитивный спад. Команда проанализировала данные более чем 500 тысяч участников из британского биобанка и американской Программы миллионов ветеранов. Дополнительно был выполнен метаанализ сорока пяти исследований, в общей сложности включавших сведения о 2,4 миллиона человек. Такой масштаб позволил оценить не только прямую связь между употреблением спиртного и развитием деменции, но и влияние генетической предрасположенности. Один из наиболее тревожных результатов касается людей с повышенным ге ...>>

Случайная новость из Архива

Достигнута скорость передачи данных 43 терабита в секунду 05.08.2014

Исследователи из Датского технического университета (DTU) смогли осуществить передачу данных со скоростью 43 Тбит/с, используя один волоконно-оптический кабель и один лазерный трансмиттер.

Указанная скорость эквивалентна 5,4 ТБ/с, то есть, например, позволяет передать все содержимое жесткого диска объемом 1 ТБ за пятую долю секунды или скопирвать файл объемом 1 ГБ за 0,2 мс.

Достигнутая датскими учеными скорость передачи данных это рекорд на сегодняшний день. Предыдущий рекорд был установлен в лаборатории Технологического института Карлсруэ в Германии (32 Тбит/с).

Чтобы достичь нового рекорда, ученым DTU потребовалось воспользоваться новым оптоволоконным кабелем, разработанным коллегами из японской телекоммуникационной компании NTT. Он содержит 7 сердечников вместо одного в современных кабелях. Несмотря на большее число сердечников, кабель имеет такой же диаметр, что и современные изделия.

Команда DTU отметила в официальном сообщении, что их достижение позволит увеличить скорость передачи данных и снизить потребление электроэнергии в опорных сетях интернета. О доступности такой скорости рядовым потребителям речи не идет.

В университете напомнили, что ранее они смогли достичь скорости передачи данных 1 Пбит/с (128 ТБ/с), но для этого им потребовалось использовать несколько сотен лазерных трансмиттеров.

Другие интересные новости:

▪ Электроэнергия из снега

▪ Планшет Voyo A15 на процессоре Exynos 5250

▪ Кулер FrigusAir 400 ARGB

▪ Коровы делятся на оптимистов и пессимистов

▪ Переключатель жидкого света

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Молниезащита. Подборка статей

▪ статья В бананово-лимонном Сингапуре. Крылатое выражение

▪ статья Почему скунс пахнет? Подробный ответ

▪ статья Развязывающийся ткацкий узел. Советы туристу

▪ статья Переговорное устройство. Энциклопедия радиоэлектроники и электротехники

▪ статья Благородная патина. Химический опыт

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:




Комментарии к статье:

Гость
Проверю схему в действии - напишу.


Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025