Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Трехканальная цветомузыкальная приставка с компрессорами. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Цветомузыкальные установки, гирлянды

Комментарии к статье Комментарии к статье

Принцип действия предлагаемой приставки несколько отличается от подобных устройств. Хотя в ней по-прежнему частотный диапазон подводимых сигналов 3Ч разделен на три участка, на каждый из которых "настроен" свой цветовой канал, лампы каналов, соединенные в гирлянды, вспыхивают поэтапно - в зависимости от уровня входного сигнала. Поэтому изменяется не просто интенсивность освещения экрана приставки, а и площадь освещаемого участка. В результате на экране "рисуются" самые разнообразные конфигурации цветовых сочетаний. Как показала практика, эстетическое восприятие цветового сопровождения музыкальных произведений при такой работе приставки повышается.

Принципиальная схема приставки приведена на рис. 1.

Трехканальная цветомузыкальная приставка с компрессорами
Рис.1 (нажмите для увеличения)

В ней предварительный усилитель 3Ч и три активных фильтра: низших (НЧ), средних (СЧ) и высших (ВЧ) частот. После каждого фильтра следует так называемый компрессор, "сжимающий" динамический диапазон воспроизводимого звукового сигнала, а после него -усилитель напряжения, управляющий работой осветительных ламп экрана.

Предварительный усилитель, рассчитанный на работу от сигнала, снимаемого с линейного выхода моно- или стереофонического магнитофона либо электрофона, собран на транзисторах VT1 и VT2. Входной сигнал поступает через разъем XS1 и резисторы R1, R2 (они позволяют смешивать сигналы левого и правого каналов, поступающие со стереофонического звуковоспроизводящего устройства) на общий регулятор чувствительности - переменный резистор R3.

Для увеличения входного сопротивления приставки первый каскад усилителя выполнен на полевом транзисторе VT1 по схеме с общим истоком. Резистором R5 задается нужный рабочий режим транзистора. Конденсатор С1 шунтирует этот резистор по переменному току, чтобы коэффициент усиления каскада по напряжению не снизился.

Далее сигнал подается через разделительный конденсатор С2 на вход эмиттерного повторителя, собранного на транзисторе VT2. Он обладает сравнительно большим входным сопротивлением и низким выходным, что необходимо для лучшего согласования входного каскада с каналами разделения сигналов по частоте. Режим работы каскада задается резисторами R6-R8.

С резистора R8 усиленный по току и напряжению сигнал поступает через разделительный конденсатор С3 на входы активных фильтров, выполненных на составных транзисторах VT3VT4, VT6VT7 и VT9VT10. Как известно, составной транзистор обладает высоким коэффициентом передачи (примерно равным произведению коэффициентов передачи обоих транзисторов), а значит, большим входным сопротивлением. Это обстоятельство позволяет получить достаточно крутой спад усиления фильтров вне полосы пропускания.

На составном транзисторе VT3VT4 собран фильтр ВЧ, который пропускает сигналы частотой более 2000 Гц. Частота среза задается номиналами цепочки C4C5R10. Фильтр СЧ на транзисторе VT6VT7 пропускает сигналы частотой 200...2000 Гц. Нижнюю частоту среза определяют конденсаторы С 13, С 14 и резистор R23, а верхнюю - конденсаторы С 11, С 12 и резисторы R21, R22. Фильтр НЧ выполнен на транзисторе VT9VT10, он пропускает сигналы частотой до 200 Гц. Частоту среза задают конденсаторы С20, С21 и резисторы R34, R35.

Для согласования динамического диапазона сигнала 3Ч (около 40 дБ) с диапазоном изменения яркости ламп освещения экрана (примерно 20 дБ) после каждого активного фильтра стоит компрессор. Он представляет собой усилитель напряжения (на операционных усилителях DA1, DA3, DA5) с логарифмической характеристикой, определяемой нелинейностью вольт-амперных характеристик двух диодов (VD1, VD2; VD6, VD7; VD11, VD12), включенных встречно-параллельно в цепи обратной связи. Максимальный коэффициент передачи компрессора, скажем, на микросхеме DA1, определяется отношением сопротивлений резисторов R16 и R15 - оно соответствует сжатию динамического диапазона сигнала 3Ч приблизительно на 20 дБ (10 раз) при изменении сигнала на входе компрессора от 5 до 500 мВ (100 раз).

Сигналы с выходов компрессоров поступают через разделительные конденсаторы (С8, С 17, С25) на выпрямители, собранные на диодах (VD3, VD4; VD8, VD9; VD13, VD14) по схеме удвоения напряжения. Конденсаторы С9, С18, С26 служат для сглаживания пульсации выпрямленных напряжений, выделяющихся на соответствующих переменных резисторах (R17, R30, R42). С движков резисторов нужный уровень выходного напряжения выпрямителей подается на усилители, каждый из которых состоит из двух каскадов - на операционном усилителе (DA2, DA4, DA6) и на транзисторе (VT5, VT8, VT11). Общий коэффициент усиления такого узла определяется отношением сопротивлений резисторов, (например, R19 и R18) в цепи обратной связи. Диод (например VD5), шунтирующий эмиттерный переход транзистора, замыкает цепь обратной связи операционного усилителя.

Усиленные сигналы поступают на выходные устройства А1-A3, собранные по одинаковым схемам. На рис. 1 раскрыта лишь схема узла А1 канала высших частот. На его входе, куда поступает сигнал с эмиттера транзистора VT5, находится пороговое устройство, собранное на диодах VD16--VD24. Работа его основана на свойстве полупроводникового диода открываться при определенном напряжении между анодом и катодом. Так, у германиевых диодов это напряжение составляет 0,2...0,4 В, у кремниевых - 0,6...0,8 В.

Работает пороговое устройство так. Когда напряжение на входе узла А1 возрастает примерно до 0,4 В, открывается ключ, выполненный на составном транзисторе VT12VT22 и зажигаются лампы EL1, EL12. Дальнейшее повышение напряжения приводит к открыванию диода VD16, а значит, и ключа на транзисторе VT13VT23. Вспыхивают лампы EL2, EL13. Если напряжение продолжает увеличиваться, открывается диод VD17, ключ на транзисторе VT14VT24 и т. д. Иначе говоря, чем больше управляющий сигнал, тем большее число ламп канала зажигается. Лампы же EL11, EL22 горят постоянно и предназначены для начальной подсветки экрана.

Питается приставка от блока, содержащего трансформатор Т1, два мостовых выпрямителя и два стабилизатора. Для питания ламп накаливания экрана служит выпрямительный мост на диодах VD27-VD30. Выпрямительный мост VD31 используется для питания компенсационных стабилизаторов напряжения, один из которых выполнен на транзисторах VT32-VT34 и стабилитроне VD25, а другой - на транзисторе VT34 и стабилитроне VD26. В итоге получается двуполярное напряжение, необходимое для работы операционных усилителей. Поскольку потребляемый ток по цепи источника - 12 В значительно превышает ток, потребляемый от второго источника, в качестве регулирующего в нем использован составной транзистор (VT32VT33).

В приставке использованы постоянные резисторы МЛТ-0,25 (R56 и R57) и МЛТ-0,125 (остальные), переменные резисторы могут быть СП-1 или другие аналогичные. Оксидные конденсаторы - К52-2 (С28-С31) и К50-6 (остальные), другие постоянные конденсаторы могут быть серий КТ, КЛС, KM, K73. Вместо К553УД2 можно использовать К553УД1А или аналогичные операционные усилители, например, серий К 140, К153 с напряжением питания ±12...15 В. Вместо транзисторов МП26Б подойдут любые из серий МП39-МП42; вместо КТ315Г - КТ315Б и КТ315Е; вместо КТ361Г - КТ361Б и КТ361Е;

вместо ГТ403Б - любые из серий ГТ403, П213, П214; вместо ГТ321В - любые из серий ГТ402, КТ501, КТ502; вместо КП103К - КП103Л, КП103М. Диоды Д223 допустимо заменить любыми из серий Д220, КД521; Д9Г - любыми из серии Д9; Д242 - любыми другими с допустимым выпрямленным током 10 А. Мощные диоды следует разместить на радиаторах общей площадью по 40...50 см2, изготовленных из листовой меди или латуни толщиной 2...3 мм.

Транс форматор питания может быть готовым мощностью 60...70 Вт. Его обмотка II должна быть рассчитана на напряжение 8 В при токе нагрузки 8А, а обмотка III - на напряжение 30 В (между крайними выводами) при токе нагрузки до 0,5 А. Самодельный трансформатор допустимо намотать на магнитопроводе ШЛ20 X 32. Обмотка I должна содержать 1200 витков провода ПЭВ-1 0,41, обмотка II - 46 витков ПЭВ-1 0,8, обмотка III - 174 витка с отводом от середины провода ПЭВ-1 0,51.

Все лампы накаливания - на напряжение 3,5 В и ток 0,26 А.

Часть деталей узлов А1-A3 смонтирована на трех отдельных платах (рис. 2) из одностороннего фольгированного материала, а большая часть деталей усилителей, активных фильтров и блока питания размещена на общей плате (рис. 3) из такого же материала.

Трехканальная цветомузыкальная приставка с компрессорами
Рис.2 (нажмите для увеличения)

Трехканальная цветомузыкальная приставка с компрессорами
Рис.3 (нажмите для увеличения)

Трансформатор питания, мощные диоды и платы укреплены в корпусе размерами 560х220х140 мм (рис. 4), каркас которого изготовлен из металлических уголков 20Х20 мм и обшит текстолитом толщиной 5 мм, кроме лицевой панели - она выполнена из матового органического стекла. В верхней стенке корпуса просверлены вентиляционные отверстия.

Трехканальная цветомузыкальная приставка с компрессорами
Рис.4

На расстоянии примерно 20 мм от лицевой панели-экрана расположена панель из стеклотекстолита, в которой закреплены лампы накаливания - они расположены в соответствии с рис. 5.

Трехканальная цветомузыкальная приставка с компрессорами
Рис.5

В верхнем ряду расположены лампы канала ВЧ, окрашенные в желтый и оранжевый цвета, в среднем ряду - лампы канала СЧ (зеленый и салатовый цвета), в нижнем ряду - лампы канала НЧ (красный и малиновый цвета).

Таким образом, образуются три цветные полосы, "разгорающиеся" от середины экрана. При изменении уровня сигнала воспроизводимого музыкального произведения изменяется ширина светящихся полос и их число - в зависимости от частотного спектра сигнала.

Для получения на экране более сложных фигур (окружностей, прямоугольников, звезд и т. д.), придется увеличить число ламп накаливания в каждом канале, соответственно разместив их на панели за экраном. Возможно увеличение размеров экрана и применение более мощных ламп, даже на напряжение 220 В. В этом варианте целесообразнее применить вместо транзисторных тринисторные ключи для управления зажиганием ламп.

Во время работы приставки наиболее приятное освещение экрана подбирают переменными резисторами чувствительности по каналам и общей чувствительности.

Автор: В.Демьянец

Смотрите другие статьи раздела Цветомузыкальные установки, гирлянды.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Токсичность интернета преувеличена 07.01.2026

Социальные сети нередко воспринимаются как арена постоянной агрессии, оскорблений и распространения фейковой информации. Новое исследование Стэнфордского университета показывает, что реальность значительно отличается от популярного представления: интернет гораздо менее токсичен, чем многие пользователи считают. Ученые опросили более тысячи американцев, попросив их оценить долю пользователей соцсетей, которые ведут себя агрессивно или распространяют ненависть. Оказалось, что впечатления людей сильно преувеличивают масштабы проблемы. Например, респонденты считали, что почти половина пользователей Reddit хотя бы раз оставляла оскорбительные комментарии, тогда как фактические данные платформы показывают, что таких людей не более 3%. Аналогичная ситуация наблюдается с дезинформацией. Опрос показал, что большинство участников считали почти половину аудитории Facebook распространителями фейковых новостей, однако статистика говорит об обратном: фактическая доля таких пользователей состав ...>>

Процессоры Ryzen AI 400 07.01.2026

Современные вычисления все больше ориентируются на интеграцию искусственного интеллекта и высокую производительность в компактных устройствах, таких как ноутбуки и мини-ПК. Новая линейка процессоров AMD Ryzen AI 400 демонстрирует, как разработчики объединяют мощные центральные ядра, графику и нейросетевые ускорители в одном чипе, чтобы удовлетворять растущие потребности пользователей в играх, контенте и ИИ-приложениях. AMD представила процессоры серии Gorgon Point, которые включают до 12 ядер Zen 5 и до 24 потоков вычислений. Чипы поддерживают интегрированную графику RDNA 3.5, обеспечивают максимальную тактовую частоту до 5,2 ГГц и имеют энергопотребление от 15 Вт до 54 Вт. Особое внимание уделено NPU, способному обрабатывать до 60 триллионов операций в секунду (TOPS), что делает эти процессоры эффективными для задач с искусственным интеллектом. Конструкция Ryzen AI 400 сочетает ядра Zen 5 и Zen 5c, обеспечивая высокую гибкость и производительность. Несмотря на то, что архитектур ...>>

Женщины лучше распознают признаки болезни по лицу 06.01.2026

Способность распознавать, что кто-то нездоров, часто проявляется интуитивно: бледная кожа, опущенные веки, уставшее выражение лица могут сигнализировать о недомогании. Новое исследование международной группы ученых показало, что женщины в среднем точнее мужчин улавливают такие тонкие невербальные признаки болезни, что может иметь эволюционные и социальные объяснения. В отличие от предыдущих работ, где использовались отредактированные фотографии или имитация больных лиц, ученые решили проверить, насколько люди способны распознавать естественные признаки недомогания. Такой подход позволил оценить реальную чувствительность к изменениям в лицах, возникающим при болезни. В исследовании приняли участие 280 студентов, поровну мужчин и женщин. Участникам предложили оценить 24 фотографии, на которых изображены люди как в здоровом состоянии, так и во время болезни. Это дало возможность сравнить восприятие естественных признаков недомогания в реальных лицах. Для анализа состояния каждого ...>>

Случайная новость из Архива

Полет на Марс изменит человеческий организм 03.09.2022

Эксперты по космической медицине из Австралийского национального университета разработали математическую модель для выявления трудностей, с которыми человеческий организм столкнется во время полета на Марс. Алгоритм позволил просчитать ключевые изменения сердечно-сосудистой системы, которые могут произойти во время длительного полета в шесть-семь месяцев.

В результате исследования ученые выяснили, что главный вред организму нанесет длительное пребывание в условиях микрогравитации. За полугодовой полет структура сосудов и сердечная система рискуют значительно перестроиться под новые условия искусственного тяготения.


В такой обстановке кровь не притягивается к конечностям, как при земной гравитации. Сердце астронавта замедляет работу, поскольку не нужно перекачивать столько крови, как на Земле. Но остальное организм этого не ожидает, и мозг считает, что в теле накопилось слишком много воды, поскольку жидкость задерживается в верхней части туловища. В дело вступают защитные механизмы против излишка жидкости, через которые наступает обезвоживание. При этом сам участник экспедиции этого можно даже не заметить.

Впрочем, не так ужасно. Авторы исследования считают, что такие изменения не нанесут больших потерь здоровью, и астронавты смогут без проблем сохранять работоспособность даже после полугода космического полета.

Другие интересные новости:

▪ Разгадана причина свежего запаха леса после дождя

▪ Утвержден стандарт Wi-Fi 802.11n

▪ Акустический контроль в наномире

▪ Двухъядерный Atom для нетбуков

▪ Шоколад, который не тает

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Аудиотехника. Подборка статей

▪ статья Вот тебе, (бабушка), и Юрьев день. Крылатое выражение

▪ статья Откуда произошло слово баг в значении неисправность? Подробный ответ

▪ статья Операционная медицинская сестра. Должностная инструкция

▪ статья Антенный адаптер для повышения эффективности функционирования беспроводных сетей. Энциклопедия радиоэлектроники и электротехники

▪ статья Усилитель мощности трансивера. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:




Комментарии к статье:

Валерий
Обожаю электронику!


Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2026