Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Акустический выключатель освещения. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Освещение

Комментарии к статье Комментарии к статье

Логика работы акустического включателя подобна счетному триггеру. Звуковой сигнал включает лампы, если они выключены, или выключает, если они включены. В паузах между сигналами состояние ламп остается неизменным.

Акустический выключатель освещения
Рис. 1

Схема выключателя изображена на рис. 1. EL1 - одна или несколько соединенных параллельно ламп (накаливания или "энергосберегающих") суммарной мощностью до 1000 Вт, которыми управляет выключатель. Благодаря применению экономичных микросхем К154УД1А [1] и HEF4013BP [2] активная составляющая тока, потребляемого от сети при выключенной лампе, - всего 0,88 мА. Как показала практика, включение лампы в цепь постоянного, выпрямленного диодным мостом VD1, а не переменного тока, обеспечивает лучшую помехоустойчивость устройства.

Выпрямленное этим мостом напряжение после гашения его избытка резистором R7, ограничения стабилитроном VD4 на уровне 10 В и сглаживания конденсатором С1 использовано и для питания микросхем. Конденсатор С6 в цепи их питания подавляет высокочастотные помехи. Благодаря малому потребляемому току мощность, рассеиваемая на резисторе R7, не превышает 0,25 Вт. Конденсатор C3 заметно снижает вероятность ложных срабатываний выключателя устройства от помех, проникающих из электросети. Это подтверждено экспериментально.

ОУ DA1 усиливает поступающие с микрофона ВМ1 сигналы. Коэффициент усиления, от которого зависит порог срабатывания, регулируют подстроечным резистором R4. Поскольку соединение инвертирующего входа ОУ с общим проводом по постоянному току разорвано конденсатором С4, постоянная составляющая напряжения на этом входе и на выходе ОУ всегда равна такой же составляющей напряжения на неинвертирующем входе ОУ. Подборкой резистора R1 в цепи питания микрофона ВМ1 ее устанавливают приблизительно равной половине напряжения питания ОУ. Это дает возможность получить максимальный размах переменного напряжения на его выходе. Конденсаторы С2 и С5 формируют АЧХ усилителя, подавляя высокочастотные составляющие сигнала.

На диодах VD2 и VD3 собран амплитудный детектор переменной составляющей сигнала. Резистор R5 замедляет нарастание напряжения на конденсаторе С8, предотвращая срабатывание выключателя от слишком коротких акустических сигналов. Через резистор R6 конденсатор С8 разряжается по окончании сигнала.

Как только напряжение на конденсаторе С8 превысит пороговое для входа С триггера DD1.1 значение (около 5 В), триггер приводит свои выходы в состояние, соответствующее логическому уровню на входе D. Цепь R11С9 создает задержку приблизительно в 1 с между изменением логического уровня напряжения на инверсном выходе триггера и на его входе D. Поэтому состояние триггера изменяет только первый из серии импульсов, поступивших на вход С за время задержки. Этим устраняется непредсказуемость состояния выключателя после приема неизвестного заранее числа следующих один за другим звуковых импульсов, возникающих, например, в результате многократного отражения звука от стен помещения и находящихся в нем предметов.

Следует отметить, что тактовые входы триггеров микросхемы HEF4013BP, в отличие от аналогов (КР1561ТМ2, CD4013BCN), имеют характеристики переключения с гистерезисом, как у триггера Шмитта По этой причине заменять указанную микросхему аналогами нежелательно.

При включении питания цепь R8C10 формирует импульс, устанавливающий триггер DD1.1 в состояние с низким уровнем на выходе 1. Это необходимо, чтобы после включения устройства в сеть лампа EL1 оставалась выключенной до получения включающего ее сигнала. Не включится она самостоятельно и при восстановлении напряжения в сети после перебоя в электроснабжении.

Когда на выходе триггера DD1.1 установлен низкий уровень, такой же он и на входе S триггера DD1.2, так как диод VD5 открыт. В этой ситуации уровень на выходе 13 триггера DD1.2 остается низким независимо от уровня на входах С и D, поскольку на вход R подано напряжение высокого уровня.

При высоком уровне на выходе 1 триггера DD1.1 диод VD5 закрыт. Поступающее через резистор R10 на вход S триггера DD1.2 пульсирующее напряжение (сетевое, выпрямленное мостом VD1) в начале каждого полупериода переводит триггер в состояние с высоким уровнем на выходе 13. Сигнал с этого выхода служит для тринистора VS1 открывающим. Обратите внимание, что между управляющим электродом и катодом тринистора отсутствует резистор, рекомендуемый руководствами по применению тринисторов серий КУ201 и КУ202. В нем нет необходимости, поскольку выходное сопротивление триггера DD1.2 достаточно мало в обоих его состояниях.

Как только тринистор открывается, напряжение между его анодом и катодом резко уменьшается, уровень напряжения на входе S и выходе 13 триггера DD1.2 становится низким и открывший тринистор импульс прекращается. Таким образом, его длительность всегда остается минимально достаточной для открывания тринистора. В следующем полупериоде процесс повторяется.

Необходимо отметить, что прл слишком быстром после отключения повторном включении прибора в сеть описанное устройство может "зависнуть". В этом случае следует отключить его от сети и вновь включить, выждав не менее 10 с, необходимых для разрядки конденсаторов.

Если в качестве EL1 используются одна или несколько "энергосберегающих" ламп без корректоров коэффициента мощности, работа выключателя происходит несколько иначе, чем с лампами накаливания. В электронном пускорегулирующем аппарате "энергосберегающих" ламп имеется диодный выпрямитель сетевого напряжения со сглаживающим конденсатором. Поэтому ток через лампу не протекает, пока мгновенное значение напряжения в сети не превысит напряжения, до которого заряжен конденсатор, а оно лишь немного меньше амплитуды сетевого До этого момента сопротивление лампы очень велико, поэтому уровни на входе S и выходе триггера DD1.2 остаются низкими и открывающее напряжение на управляющий электрод тринистора не поступает. Тринистор откроется после того, как напряжение в сети примерно на 15 В превысит напряжение на конденсаторе лампы.

Основная проблема, которая возникает при управлении "энергосберегающими" лампами с помощью тринистора, связана с тем, что ток утечки этого прибора (в закрытом состоянии) может достигать нескольких миллиампер. Хотя этого недостаточно для непрерывного горения лампы, иногда она периодически вспыхивает, так как сглаживающий конденсатор постепенно заряжается током утечки, а затем разряжается током вспыхнувшей лампы. Это не только неприятно визуально, но и сокращает срок службы лампы.

Чтобы избавиться от вспышек, можно либо подобрать другой экземпляр тринистора, либо подключить параллельно "энергосберегающей" обычную лампу накаливания. Второй вариант предпочтительнее. Шунтировать, как иногда рекомендуют, "энергосберегающую" лампу резистором в данном случае неприемлемо.

Другая проблема связана со значительным импульсным током, протекающим через лампу (особенно "энергосберегающую") в момент ее включения. Этот импульс способен повредить тринистор или диоды выпрямителя. Хотя многие "энергосберегающие" лампы оснащены токоограничительными элементами, но если несколько таких ламп соединены параллельно, последовательно с ними желательно включить резистор сопротивлением около 10 Ом. Мощность этого резистора должна быть не менее вычисленной по формуле

где Р - мощность резистора, Вт; R - его сопротивление, Ом; Рсум - суммарная мощность ламп, Вт; U - напряжение в сети, В; лямбда - коэффициент мощности (обычно 0,3...0,5).

Акустический выключатель освещения
Рис. 2

Схема другого варианта узла коммутации лампы EL1 изображена на рис. 2. Нумерация элементов здесь продолжает начатую на рис. 1. Этот узел не подвержен "зависанию", менее критичен к току открывания тринистора, а главное - включает лампу при меньшем мгновенном значении сетевого напряжения. На триггере DD1.2 собран одновибратор. Запускает его при наличии разрешающего высокого уровня на входе D-триггера сигнал, поступающий на вход С через делитель напряжения R9R10. Это происходит в моменты времени, когда напряжение на аноде тринистора растет и достигает примерно 15 В.

Пока на входе D напряжение низкого логического уровня, триггер сохраняет состояние с низким уровнем на выходе 13, транзистор VT1 и тринистор VS1 закрыты, а лампа обесточена. При высоком уровне на входе D поступающие на вход С импульсы в начале каждого полупериода сетевого напряжения переводят триггер в состояние с высоким уровнем на выходе. Транзистор VT1 и тринистор VS1 открываются, на лампу подается напряжение. Конденсатор С11 заряжается через резистор R13. Приблизительно через 10 мкс напряжение на входе R триггера достигает порогового значения и триггер возвращается в исходное состояние. Тринистор остается открытым до конца полупериода, а в следующем процесс повторяется.

С особенностями узлов управления тринисторами и их применения можно ознакомиться в [3, 4].

В выключателе могут быть установлены тринисторы КУ202К - КУ202Р, КУ202К1-КУ202Р1. Если мощность ламп не превышает 400 Вт, подойдут и тринисторы КУ201К-КУ201Н. При коммутируемой мощности более 200 Вт тринистор следует установить на теплоотвод. Для тринисторов серии КУ202 гарантирован открывающий ток управляющего электрода не более 100 мА, хотя фактически у большинства из них он в несколько раз меньше. У всех испытанных автором экземпляров (около десятка) этот ток не превышал 10 мА. Если микросхема DD1 в устройстве, собранном по схеме, изображенной на рис. 1, все-таки не сможет отдать нужный ток, может потребоваться подборка тринистора. Для узла, собранного по схеме, показанной на рис. 2, подбирать тринистор не требуется.

Транзистор КТ940А можно заменить на КТ940Б, а также на КТ604 и КТ605 с любыми буквенными индексами. Все эти транзисторы работают достаточно надежно, хотя приложенное к ним напряжение формально превышает максимально допустимое значение.

Аналог диодного моста KBU6G - RS604. Подойдут и другие диодные мосты или отдельные диоды, рассчитанные на обратное напряжение не менее 400 В и на ток, потребляемый управляемыми выключателем лампами. Диоды КД521А заменят любые маломощные кремниевые диоды.

В качестве ОУ DA1 подойдет не только К154УД1А, но и К154УД1Б, а также 174УД1А, 174УД1Б, КР154УД1А, КР154УД1Б. У микросхем серий 174 и К174 с выводом 5 соединен металлический корпус. Поскольку микросхемы серии КР174 выполнены в пластмассовом корпусе, этот вывод у них оставлен свободным и присоединять его никуда не требуется.

Микрофон CZN-15Е заменяется любым другим малогабаритным элект-ретным со встроенным усилителем на полевом транзисторе. Подойдет, например, отечественный микрофон МКЭ-332. При его подключении необходимо соблюдать полярность. Резистор R1 подбирают таким, чтобы напряжение между выводами микрофона было около 5 В.

Литература:

1. Микромощный операционный усилитель 154УД1. - rdalfa.lv/data/oper_usil/1541 .pdf.
2. HEF4013B Dual D-type flip-flop. -nxp.com/acrobat_download/datasheets/HEF4013B_5.pdf.
3. Кублановский Я. Тиристорные устройства. - М.: Радио и связь, 1987 (Массовая радиобиблиотека, вып. 1104).
4. Управление тринисторами и симисторами. - platan.ru/shem/pdf/ 12_р21 -25.pdf.

Автор: К. Гаврилов, г. Новосибирск; Публикация: radioradar.net

Смотрите другие статьи раздела Освещение.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Питомцы как стимулятор разума 06.10.2025

Помимо эмоциональной поддержки, домашние питомцы могут оказывать заметное воздействие на когнитивные процессы, особенно у пожилых людей. Новое масштабное исследование показало, что общение с кошками и собаками не просто улучшает настроение - оно действительно способствует замедлению возрастного снижения умственных способностей. Работа проводилась в рамках проекта Survey of Health, Ageing and Retirement in Europe (SHARE), охватывающего период с 2004 по 2022 год. В исследовании приняли участие тысячи европейцев старше 50 лет. Анализ показал, что владельцы домашних животных демонстрируют более устойчивые когнитивные функции по сравнению с теми, кто не держит питомцев. Особенно выражен эффект оказался у владельцев кошек и собак. Согласно данным ученых, владельцы собак дольше сохраняют хорошую память, в то время как хозяева кошек медленнее теряют способность к быстрому речевому взаимодействию. Исследователи связывают это с тем, что ежедневное взаимодействие с животными требует внимани ...>>

Мини-ПК ExpertCenter PN54-S1 06.10.2025

Компания ASUSTeK Computer презентовала новый мини-компьютер ASUS ExpertCenter PN54-S1. Устройство ориентировано на пользователей, которым важно сочетание производительности, энергоэффективности и универсальности - от офисных задач до мультимедийных проектов. В основе ExpertCenter PN54-S1 лежит современная аппаратная платформа AMD Hawk Point, использующая архитектуру Zen 4. Это поколение чипов отличается улучшенным управлением энергопотреблением и повышенной вычислительной мощностью. Новинка доступна в конфигурациях с процессорами Ryzen 7260, Ryzen 5220 и Ryzen 5210, представленных AMD в начале 2025 года. Таким образом, устройство охватывает широкий диапазон задач - от базовых офисных до ресурсоемких вычислений. Корпус мини-ПК выполнен из прочного алюминия и имеет размеры 130&#215;130&#215;34 мм, что делает его практически незаметным на рабочем столе или за монитором. Несмотря на компактность, внутренняя компоновка позволяет установить два модуля оперативной памяти SO-DIMM ...>>

Глазные капли, возвращающие молодость зрению 05.10.2025

С возрастом человеческий глаз постепенно теряет способность четко видеть на близком расстоянии - развивается пресбиопия, или возрастная дальнозоркость. Этот естественный процесс связан с утратой эластичности хрусталика и ослаблением цилиарной мышцы, отвечающей за фокусировку. Миллионы людей по всему миру сталкиваются с необходимостью носить очки для чтения или прибегают к хирургическим методам коррекции. Однако исследователи из Центра передовых исследований пресбиопии в Буэнос-Айресе представили решение, которое может стать удобной и неинвазивной альтернативой - специальные глазные капли, способные улучшать зрение на длительный срок. Разработку возглавила Джованна Беноцци, директор Центра. По ее словам, цель исследования состояла в том, чтобы предоставить пациентам с пресбиопией эффективный и безопасный способ коррекции зрения без хирургического вмешательства. Новые капли, созданные на основе пилокарпина и диклофенака, показали убедительные результаты: уже через час после первого пр ...>>

Случайная новость из Архива

В магнитосфере Земли впервые зафиксирован энергетический взрыв 21.11.2018

Исследователи из Университета Нью-Гэмпшира заметили трудноуловимое сингулярное событие, включающее магнитное пересоединение - процесс, с помощью которого разреженные частицы и энергия Земли сталкиваются, производя быстрый, но мощный взрыв в хвосте магнитосферы Земли.

Магнитное пересоединение до сих пор оставалось загадкой для ученых. Они знают, что оно существует, и документировали последствия, которые могут иметь энергетические взрывы, - полярные сияния и, возможно, нарушение в электросетях в случае чрезвычайно сильных событий, - но они не полностью понимали детали. В новом исследовании ученые излагают первые взгляды на критически важные детали того, как этот процесс преобразования энергии работает в хвосте магнитосферы Земли.

Магнитное пересоединение происходит вокруг Земли каждый день из-за скручивания и повторного соединения магнитных полей. Это происходит по-разному в разных местах, производя неодинаковые эффекты. Частицы плазмы могут быть преобразованы и вызывают один мощный взрыв, длящийся всего лишь долю секунды, что может привести к сильным потокам электронов, летящих со сверхзвуковой скоростью. Событие, которое заметили ученые, имело достаточно высокое разрешение, чтобы выявить его отличия от других режимов пересоединения, например от асимметричного процесса, который происходит в магнитопаузе Земли - внешней границе магнитосферы Земли.

Магнитное пересоединение также происходит на Солнце и во всей Вселенной - во всех случаях насильственно расстреливая частицы и запуская большую часть изменений, которые мы наблюдаем в динамических космических средах, поэтому изучение этого процесса на Земле помогает нам понять пересоединение в других местах, которых не может достичь космический корабль. Чем больше мы понимаем разные типы магнитных пересоединений, тем лучше мы можем понять, как такие взрывы могут выглядеть в других местах.

Асимметричное событие было впервые замечено 16 октября 2015 года, а симметричное событие теперь датируется 11 июля 2017 года, когда миссия NASA, пролетела через процесс магнитного пересоединения вблизи Земли. Четыре космических корабля МКС находились внутри событий всего несколько секунд, но инструменты, используемые учеными, собрали данные с беспрецедентной скоростью - в сто раз быстрее, чем когда-либо прежде. В результате ученые впервые смогли определить изменение в магнитных полях, появление новых и скорость и направление различных заряженных частиц.

Другие интересные новости:

▪ Многократно наносимые и стираемые чернила

▪ Созданы живые синтетические клетки

▪ TLK1101E - эквалайзер 11,3 Гбит/с

▪ Плащ-невидимка почти готов

▪ Высокоэффективный полупроводниковый лазер от Sharp

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Моделирование. Подборка статей

▪ статья Кеплер Иоганн. Биография ученого

▪ статья Почему некоторые древние города оказались под слоями земли и откуда она взялась? Подробный ответ

▪ статья Чернобыл. Легенды, выращивание, способы применения

▪ статья Однодиапазонная антенна быстрого развертывания. Энциклопедия радиоэлектроники и электротехники

▪ статья Исчезновение шара из кулака. Секрет фокуса

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025