Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Трансвертер на 430 МГц. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Гражданская радиосвязь

Комментарии к статье Комментарии к статье

Трансвертер рассчитан на работу с KB трансивером, имеющим диапазоны 21 или 28 МГц. Конкретный участок УКВ диапазона 430... 440 МГц, который будет перекрывать трансвертер, зависит от выбора частоты кварцевого резонатора в гетеродине и используемого диапазона KB трансивера. Здесь следует отметить, что радиолюбители в диапазоне 430 МГц обычно работают выше частоты 432 МГц, поэтому данный Трансвертер перекрывает с трансиверами типа UW3DI участок 432.. .432.5 МГц (диапазон 21...21.5 МГц) или 432...433.5 МГц (диапазон 28...29.5 МГц). Выходная мощность трансвертера 5 Вт при входной мощности около 1 мВт. Коэффициент шума в режиме приема - (2...2.5) кТо.

Принципиальная схема трансвертера изображена на рисунке в тексте. Он состоит из приемного (транзисторы V11 - V13) и передающего (V1 - V5) трактов и общего для них гетеродина (V6- V10).

Гетеродин - пятикаскадный. Автогенератор выполнен на транзисторе V6. Кварцевый резонатор В1 7611,1 кГц(7481.5 кГц) (здесь и далее в скобках указаны частоты при использовании трансивера на диапазон 28 МГц.) возбуждается на третьей механической гармонике. С автогенератора ВЧ напряжение поступает на цепочку умножителей (утроитель на транзисторе V7, удвоитель на V8 и утроитель на V9). Сигнал частотой 411 МГц (404 МГц) с последнего умножителя поступает на усилитель (транзистор V10), а с него - в приемный и передающий тракты.

Приемный тракт содержит двухкаскадный усилитель ВЧ (транзисторы V11, V12) и смеситель на транзисторе V13. Амплитудно-частотную характеристику тракта в основном формируют полосовой фильтр L20C50C51L21C52 и контур L22C56.

Передающий тракт начинается со смесителя, выполненного на транзисторе V5. С выхода смесителя сигнал с уровнем около 2 мВт через полосовой фильтр L9C15C16L10C17 поступает на четырехкаскадный усилитель (V4 - V1) с суммарным коэффициентом усиления 33...34 дБ. Первые два каскада (на транзисторах V4 и V3) работают в режиме класса А и усиливают сигнал до 100 мВт. Два других каскада работают в режиме класса АВ. Транзистор V2 усиливает сигнал примерно до 1 Вт, а транзистор V1 - до 5 Вт.

Конструкция и детали. Трансвертер смонтирован на плате из одностороннего фольгированного стеклотекстолита толщиной 1...2 мм размерами 165Х210 мм. Монтаж выполнен на опорных точках по способу, описанному в статье УКВ трансвертер" (Радио 1-79 г.). Пунктиром на рисунке показаны проводники, расположенные с обратной стороны платы.

Резонаторы изготовлены из посеребренного провода диаметром 1,2...1,5 мм. Зазор между линией и платой - около 1 мм. Крепление резонатора к. опорной точке увеличит начальную емкость и несколько снизит добротность резонатора (из-за потерь в стеклотекстолите), поэтому лучше ограничиться припайкой линии к выводу подстроечного конденсатора.

Мощные транзисторы снабжены общим радиатором в виде медной (можно дюралюминиевой) полосы или уголка толщиной 2...4 мм. Для улучшения теплоотвода край полосы (уголка) следует привинтить к. стенке корпуса трансвертера. Под транзистор КТ907А необходимо подложить полоску медной фольги, концы которой следует припаять к плате. Маломощные транзисторы нужно обязательно вставлять в отверстия с обратной стороны платы так,чтобы дно корпуса было на уровне фольги. В трансвертере применены конденсаторы КМ, КТ и КД.

Дроссели L2, L3, L5, L7, L15 и катушки LI. L4, L6, L12 и L13 бескаркасные. Дроссели изготовлены из отрезков (длиной около 70 мм) провода ПЭВ-2 диаметром 0,3...0,4 мм, намотанного на оправку диаметром 2 мм. Длина намотки существенной роли не играет. Бескаркасные катушки выполнены посеребренным проводом диаметром 0.8 мм. Для L1, L6 и L4 использована оправка диаметром 5 мм, для L12 - 9 мм, для L13 - 7 мм. L1, L6 содержат по 2 витка (шаг 2 мм), L4 - 3 (шаг 2 мм), L12 - 8 (длина намотки 11 мм) с отводом от 1,5-го витка, считая от заземленного вывода, L13 - 4 (длина намотки 7 мм) с отводами от 1,5 и 3,5-го витков.

Катушки L11, L18, L23 намотаны на каркасах диаметром 5 мм с подстроечниками из карбонильного железа с резьбой М4 проводом ПЭВ-2 0,2. L11 содержит 18 витков, L18 и L23 - по 12. Намотка рядовая.

В трансвертере кроме указанных на схеме транзисторов можно применять транзисторы этих же типов с другими буквенными индексами. А в приемном тракте без изменения схемы можно использовать ГТ341. ГТ362, КТ371, КТ382 и т. д.

Налаживание трансвертера производят методами, описанными в упомянутой выше статье. Конденсатор С25 подбирают так, чтобы постоянное напряжение на коллекторе транзистора V7 составило 5...6 В. После этого настраивают контур L12C29 на частоту 68,5 МГц (67.3 МГц). Изменяя местоподключения конденсаторов С27 и С28 к. катушке L12, устанавливают постоянное напряжение на коллекторе транзистора V8 в пределах 5...6 В. Затем настраивают контур L13C32 на частоту 137 МГц (134,7 МГц). Перемешая точку подключения конденсатора C31 к катушке L13, добиваются, чтобы постоянное напряжение на коллекторе транзистора V9 было 6 В.

Трансвертер на 430 МГц
(нажмите для увеличения)

Налаживание усилителя на транзисторе V10 сводится к установке тока коллектора в пределах б...7 мА подбором резистора R27. После этого приступают к. настройке контура L14C36 и полосового фильтра L16C40C41L17C42 на частоту 411 МГц (404 МГц)

Приемный тракт начинают налаживать с проверки режимов транзисторов V11 - V13. Подбирая резисторы R29. R33 и R35, устанавливают на коллекторах соответствующих транзисторов постоянное напряжение около 6 В. После этого смеситель подключают ко входу KB приемника и по максимуму шума настраивают контур L23C61C62. Затем, используя ВЧ пробник, сначала настраивают контур L22C56 на частоту гетеродина, а потом немного расстраивают в сторону повышения частоты (по максимуму шума). Контур L21C52 настраивают по минимуму шума. При этом конденсатор связи С51 временно отключают. Контур L20C50 настраивают по максимуму шума, восстановив разомкнутую цепь. Настройка входного контура L19C46 некритична, необходимо лишь добиться наилучшего отношения сигнал/шум на выходе приемника.

Передающий тракт так же, как и приемный, начинают налаживать с установки режима транзисторов по постоянному току. Подбирая резистор R12, устанавливают напряжение на коллекторе транзистора в интервале 9...10 В (ток 12 мА). Затем подбором резистора R10 устанавливают ток коллектора транзистора V4, равным 18 мА (напряжение на коллекторе 9 В), а подбором R8 - ток. транзистора V3, равным 55 мА (18 В).

Режим работы двух последних каскадов усилителя мощности лучше контролировать по падению напряжения на резисторах R1 и R4. Начальный ток транзистора V2 должен составлять 30 мА (напряжение на резисторе R4 - 0,9 В), а транзистора V1 - 50 мА (напряжение на резисторе R1 - 0.25 В).

На следующем этапе настраивают контуры. Первоначальная настройка производится на частоту гетеродина 411 МГц (404 МГц) с помощью пробника. поочередно подключаемого к. катушкам L10, L9 и L8. Точку подключения пробника надо выбирать по возможности ближе к "холодному" выводу линий.

После этого на вход передающего тракта трансвертера надо подать сигнал частотой 21,2 (28,2) МГц и увеличивать его до тех пор, пока не будет изменяться режим работы транзистора V5 по постоянному току. Сигнал гетеродина на выходе этого каскада должен при этом заметно уменьшиться. Затем с помощью пробника, подключенного к катушке L10. необходимо найти максимум, соответствующий частоте 432,2 МГц. Это должен быть ближайший максимум в сторону уменьшения емкости конденсатора СП. Аналогично настраивают два других контура. Далее переходят к согласованию каскадов на транзисторах V3 и V2. Последовательно подстраивая конденсаторы С7 и С8, добиваются максимального тока транзистора V2. При этом следует учесть, что степень связи зависит от положения ротора конденсатора С8 а конденсатор С7 служит для настройки согласующей цепи в резонанс. Дальнейшую настройку ведут при подключенной к выходу передатчика нагрузке, так как в противном случае транзистор V1 может попасть в опасный перенапряженный режим. Недонапряженный режим, соответствующий низкому сопротивлению нагрузки, для транзистора V1 менее опасен, так как данный транзистор используется только на 50% от его максимальных возможностей.

Далее следует подстроить конденсатор С5, добиваясь максимума коллекторного тока транзистора V1, а затем конденсаторы С1 и С2, получая максимум напряжения на нагрузке.

После этого полезно еще раз подстроить все контуры и проверить режимы работы транзисторов в режиме максимальной мощности. Режимы транзисторов V3 - V5 должны слабо зависеть от уровня сигнала. Коллекторный ток транзистора V2 должен возрастать до 150...170 мА, а V1 - до 280...320 мА. Следует также убедиться, что выходная мощность плавно изменяется при регулировке уровня входного сигнала частотой 21,2 МГц (28,2 МГц). Наличие скачков говорит о имеющейся регенерации или самовозбуждении одного из каскадов. При этом настройку надо повторить, варьируя связь между каскадами.

Автор: С. Жутяев (UW3FL); Публикация: Н. Большаков, rf.atnn.ru

Смотрите другие статьи раздела Гражданская радиосвязь.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Кислотность океана разрушает зубы акул 03.10.2025

Мировые океаны выполняют важнейшую функцию - они поглощают около трети углекислого газа, выбрасываемого в атмосферу. Это помогает замедлять темпы глобального потепления, но имеет и обратную сторону. Растворяясь в воде, CO2 образует угольную кислоту, которая повышает концентрацию водородных ионов и приводит к снижению pH. Вода становится более кислой, а последствия этого процесса уже заметны для морских экосистем. Средний показатель кислотности океана сейчас равен примерно 8,1, тогда как еще недавно за условную норму брали значение 8,2. По прогнозам, к 2300 году уровень может упасть до 7,3 - это сделает океан почти в десять раз кислее нынешнего состояния. Для обитателей морей подобные изменения означают не просто сдвиг химического равновесия, а реальную угрозу физиологическим процессам, начиная от формирования раковин у моллюсков и заканчивая охотничьим поведением акул. Чтобы выяснить, как именно кислотная среда отражается на зубах акул, группа немецких исследователей провела эксп ...>>

Почтовый космический корабль Arc 03.10.2025

Космические технологии становятся частью инфраструктуры, способной повлиять на логистику, медицину и даже военную сферу. Идея использовать орбиту как глобальный склад для срочных поставок звучала еще недавно как научная фантастика, но стартап Inversion пытается превратить ее в практическое решение. Компания Inversion появилась в начале 2021 года благодаря Джастину Фиаскетти и Остину Бриггсу, которые на тот момент были студентами Бостонского университета. Их замысел состоял в том, чтобы сделать возможной доставку грузов не только через спутниковые сети данных, но и в буквальном смысле - физических предметов. В основе лежит простая мысль: если космос обеспечивает доступ к любой точке Земли, то и грузы должны перемещаться тем же маршрутом. Уже за три года работы команда из 25 специалистов успела построить демонстрационный аппарат "Ray". Его запуск состоялся в рамках миссии SpaceX Transporter-12. Устройство весом 90 килограммов проверяло ключевые технологии Inversion, включая двухком ...>>

Лазерное обогащение урана 02.10.2025

Ядерная энергия остается одним из ключевых источников стабильного электричества, особенно для стран с растущими потребностями в энергоснабжении. Однако обеспечение бесперебойных поставок топлива для атомных станций требует современных технологий обогащения урана, которые одновременно эффективны и безопасны. Американская компания Global Laser Enrichment (GLE) делает значительный шаг в этом направлении, завершив масштабное тестирование лазерной технологии обогащения урана. Демонстрационная программа была проведена на объекте в Уилмингтоне, Северная Каролина. Тестирование технологии SILEX (Separation of Isotopes by Laser EXcitation), разработанной австралийской Silex Systems, стартовало в мае 2025 года и продлится до конца года. В ходе экспериментов компания планирует получить сотни фунтов низкообогащенного урана (LEU), который может быть использован в качестве топлива для атомных электростанций. GLE была создана в 2007 году для коммерциализации лазерных методов обогащения урана в С ...>>

Случайная новость из Архива

Применение компонентов модульного смартфона Ara для носимой электроники 27.04.2014

Компания Google опубликовала первый вариант спецификаций Project Ara Module Developers Kit (MDK). В спецификациях приводятся требования к общим компонентам: дисплям, процессорам, батареям, чипсетам беспроводной связи, и т.д. Первый смартфон, созданный по модульному принципу, должен появиться в начале 2015 г.

Project Ara в будущем может иметь отношение не только к смартфонам. В частности, исполнительный директор по технологиям и старший вице-президент компании Toshiba Шардул Кази (Shardul Kazi) рассказал на конференции разработчиков о своем видении того, как может быть реализована новая концепция. Шардул Кази полагает, что модульные компоненты Ara можно применять также и при создании различной носимой электроники, например, "умных" часов.

На слайде было продемонстрировано, как один из модулей смартфона Ara помещается в носимое устройство, выполненное в виде браслета. Модуль, приведенный в качестве примера, включал в себя чип на основе ядра Cortex-M4F, акселерометр и адаптер Bluetooth LE. Как уточнил Кази, это просто возможный пример реализации концепции. Стоит заметить, что Toshiba - один из партнеров Google по проекту Ara.

В любом случае, даже первый смартфон, созданный в рамках реализации проекта Ara, вряд ли будет являться по-настоящему массовым продуктом. И обсуждать возможность использования некоторых его модулей в других устройствах пока что рано. К тому же для реализации такой идеи потребуется поддержка очень многих компаний. Поэтому пока что речь идет лишь об очередной концепции.

Другие интересные новости:

▪ Однокристальный контроллер SM2320 для портативных внешних SSD

▪ Накопители данных большой емкости

▪ Раскрыт секрет долголетия черепах

▪ Пятый хлорофилл

▪ USB будильник

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Жизнь замечательных физиков. Подборка статей

▪ статья За успех нашего безнадежного дела! Крылатое выражение

▪ статья Что пишут иероглифами? Подробный ответ

▪ статья Английские единицы измерения. Советы туристу

▪ статья Программируемый кодовый замок. Энциклопедия радиоэлектроники и электротехники

▪ статья Источники питания варикапа. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025