Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Малогабаритный частотомер. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Измерительная техника

Комментарии к статье Комментарии к статье

Частотомер измеряет частоту входного сигнала в диапазоне 10 Гц...50 МГц со временем счета 0,1 с и 1 с, отклонение частоты в пределах ±10 МГц, а также осуществляет счет импульсов с отображением интервала счета (до 99 с). Входное сопротивление составляет 50... 100 Ом на частоте 50 МГц и увеличивается до нескольких килоом на низшей частоте диапазона.

Малогабаритный частотомер
Рис. 1

Схема частотомера показана на рис. 1. Основной элемент - микроконтроллер PIC12F629 (DD1), работающий по программе, коды которой приведены в таблице. Измерение частоты осуществляется посредством подсчета числа импульсов за фиксированный временной интервал. Используются два интервала - 0,1 си 1 с. В первом случае для получения частоты число импульсов умножается на 10, во втором - значения числа импульсов и частоты совпадают.

Малогабаритный частотомер

Микроконтроллер содержит два таймера-счетчика (TMR0 и TMR1), первый из которых используется для счета импульсов, а второй - для отсчета временных интервалов. Благодаря встроенному асинхронному восьмиразрядному предделителю максимальная измеряемая частота сверху ограничена только скоростью работы его триггеров и не зависит от тактовой частоты микроконтроллера. Однако содержимое предделителя невозможно считать программно, и для того чтобы его "извлечь", использован метод, описание которого приведено в статье Д. Яблокова и В. Ульриха "Частотометр на PIC-контроллере" ("Радио", 2001, № 1, с. 21, 22).

Усилитель входного сигнала собран на транзисторе VT1, с коллектора которого импульсный сигнал поступает на вход T0CKI (вывод 5) микроконтроллера DDI. Для отображения информации применен цифровой индикатор НТ1610 (HG1) со встроенным контроллером. При работе в режиме ведомого вход НК индикатора HG1 соединяют с общим проводом, а данные передаются последовательно 4-битными посылками по линиям DI и CLK. Ограниченное число линий ввода-вывода микроконтроллера DD1 не позволило выделить две из них для реализации штатного режима передачи данных, поэтому данные и синхроимпульсы пришлось передавать с выхода GP0 микроконтроллера DD1 через резистивные делители. На вход CLK индикатора HG1 импульсы поступают через делитель R7R9, а на вход DI - через интегрирующий делитель R6R8C8. Для передачи низкого логического уровня (логического 0) на выходе GP0 микроконтроллера DD1 формируется импульс напряжения длительностью 5 мкс. При этом конденсатор С8 зарядиться не успевает, и по спаду импульса на входе DI в индикатор HG1 запишется логический 0. Для передачи логической 1 длительность импульса намного больше постоянной времени цепи R6R8C8, и конденсатор С8 успевает зарядиться до высокого логического уровня, поэтому будет записана логическая 1. Пауза между импульсами также должна быть более постоянной времени цепи R6R8C8, чтобы конденсатор С8 успел разрядиться.

Питание частотомера осуществляется от гальванической или аккумуляторной батареи напряжением 8...9 В. Напряжение питания усилителя и микроконтроллера стабилизировано интегральным стабилизатором DA1. На индикатор HG1 питающее напряжение поступает с движка подстроечного резистора R5, оно должно находиться в пределах 1,4... 1,6 В.

После включения питания микроконтроллер выполняет подпрограмму измерения частоты с временем счета 0,1 с. При кратковременном нажатии на кнопку SB1 значение частоты фиксируется и микроконтроллер измеряет отклонение частоты от зафиксированного значения с последующим отображением этого отклонения на табло индикатора HG1. Повторное кратковременное нажатие на кнопку SB1 возвращает устройство в исходное состояние. Для перехода в режим измерения частоты и ее отклонения с временем счета 1 с следует нажать на кнопку SB1 и удерживать ее не менее 2 с. Еще одно длительное нажатие на кнопку SB1 переводит устройство в режим счета импульсов. В этом режиме по коротким нажатиям на кнопку последовательно происходят запуск, остановка и обнуление счетчика и индикатора времени измерения.

Частота и ее отклонение отображаются на табло частотомера в герцах. При интервале измерения 0,1 с показания выглядят следующим образом: "1Fxxxxxxxx" для частоты или "1 Fi_xxxxxxx" ("1 F-xxxxxxx") для отклонения частоты, где хххххххх - частота или ее изменение, а знак показывает на ее увеличение или уменьшение. Поскольку в индикаторе не предусмотрен вывод знака "+", он отображается как " При интервале измерения 1 с на первой позиции индикатора присутствует цифра 2. В режиме счета импульсов до старта на табло индикатора будут нули, в режиме счета - СС уууууу, где СС - время счета в секундах, уууууу - число импульсов.

Малогабаритный частотомер
Рис. 2

По окончании счета показания фиксируются.

Большинство деталей монтируют на печатной плате из односторонне фольгированного стеклотекстолита толщиной 1...1,5 мм, чертеж которой показан на рис. 2. В устройстве применены подстроечный резистор СПЗ-19, постоянные резисторы С2-23, МЛТ, подстроечный конденсатор КТ4-25, остальные - К10-17. Микросхему LM2931Z-5.0 можно заменить на 78L05, транзистор КТ3102А - на транзисторы серий КТ316, КТ342, КТ368 с любыми буквенными индексами. Плата вместе с батареей размещена в пластмассовом корпусе размерами 30x50x70 мм. Индикатор и выключатель питания закреплены на передней панели, где для них сделаны отверстия соответствующего размера. Для питания устройства можно использовать батареи "Крона", "Корунд", 6F22, потребляемый ток составляет около 9 мА. Микроконтроллер можно запрограммировать с помощью программ Pony Prog, 1С Prog.

Налаживание прибора сводится к регулировке точности измерения частоты. Для этого от образцового генератора подают непрерывный сигнал с частотой около 1 МГц, амплитудой 0,5 В и подстроечным конденсатором С5 добиваются совпадения показаний индикатора с частотой входного сигнала. Затем подборкой резистора R1 устанавливают максимальную чувствительность частотомера.

Текст и коды программы микроконтроллера можно скачать отсюда.

Автор: И. Котов, г. Красноармейск Донецкой обл., Украина; Публикация: radioradar.net

Смотрите другие статьи раздела Измерительная техника.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Растения сигнализируют об опасности вулканической активности 17.06.2025

Извержения вулканов - одни из самых разрушительных природных явлений, и своевременное их предсказание является важной задачей для защиты жизни и имущества людей. Современные технологии позволяют отслеживать сейсмическую активность, тепловые аномалии и газовые выбросы, однако ученые из разных стран продолжают искать новые, более ранние признаки приближающейся опасности. Недавнее исследование команды под руководством вулканолога Николь Гвинн продемонстрировало необычный способ раннего обнаружения вулканической активности с помощью изменений в растительности вокруг вулкана Этна - одного из самых активных вулканов Европы. В ходе двухлетних наблюдений ученые выявили 16 случаев, когда увеличение содержания углекислого газа (CO2) в воздухе или почве совпадало с ростом показателя NDVI - нормализованного индекса растительности, отражающего интенсивность фотосинтеза и здоровье зеленых насаждений. Этот индекс широко используется для оценки густоты и жизнеспособности растительного покрова на сп ...>>

Магнит без использования полезных ископаемых 17.06.2025

Технологии все больше зависят от редких и дорогих материалов, добыча которых сопряжена с экологическими и геополитическими рисками. В связи с этим поиск альтернативных решений становится одной из важнейших задач науки и промышленности. Недавно американские ученые во главе с исследователем китайского происхождения Цзянь-Пин Ванг разработали магнит, изготовленный исключительно из железа и азота, который не содержит традиционных редкоземельных элементов. Это открытие может кардинально изменить подход к производству магнитных материалов и значительно снизить зависимость от нестабильных международных поставок. В отличие от широко используемых сегодня магнитов, содержащих редкие полезные ископаемые, такие как самарий и диспрозий, новый магнит отличается более простой и экологичной составной частью. По словам ученых, магнит, созданный из железа и азота, обладает силой магнитного поля, которая превосходит многие известные материалы на рынке. Это делает его перспективной заменой для постоянн ...>>

Скука полезна творческим людям 16.06.2025

Когда информационный поток непрерывно заполняет наше сознание, умение сделать паузу становится особенно важным. Именно в моменты кажущейся скуки мозг получает возможность перезагрузиться и активировать скрытые ресурсы, стимулирующие творческое мышление и саморефлексию. Ученые из Университета Саншайн-Кост в Австралии провели исследование, которое подтверждает, что короткие периоды скуки могут быть полезны для творческих людей и не только. Скука возникает в тот момент, когда способность человека удерживать внимание начинает снижаться, и активируется так называемая сеть пассивного режима мозга. Эта система отвечает за внутренние мысли и саморефлексию, в то время как активность исполнительной сети, которая обычно помогает сосредоточиться, заметно снижается. Таким образом, скука становится не просто неприятным ощущением, а своего рода переключателем, дающим мозгу возможность отдохнуть от постоянной концентрации. Современный ритм жизни сопровождается постоянной стимуляцией симпатическо ...>>

Случайная новость из Архива

Зарядка носимых устройств от дыхания пользователя 08.12.2020

Международная группа исследователей во главе с учеными из Университета штата Пенсильвания (США) разработала эластичную систему, которая собирает энергию от дыхания и движения человека, чтобы заряжать "умные" носимые устройства - например, фитнес-браслеты.

По словам авторов работы, современные версии батарей и суперконденсаторов, питающих носимые и растягиваемые устройства для контроля и диагностики состояния здоровья, имеют множество недостатков, включая низкую плотность энергии и недостаточную эластичность.

Альтернативой батареям являются микро-суперконденсаторы - устройства накопления энергии, которые могут дополнять или заменять литий-ионные батареи в носимых устройствах. Из преимуществ: микро-суперконденсаторы небольшого размера, обладают высокой удельной мощностью. Из недостатков: они имеют "многослойную" сложенную геометрию, поэтому эти источники энергии плохо растягиваются, из-за чего их сложно соединить с носимой электроникой.

Поэтому ученые решили исследовать альтернативные архитектуры устройств. Они обнаружили, что расположение ячеек микро-суперконденсаторов "змейкой" позволяет конфигурации растягиваться и изгибаться в мостиках - местах, которые соединяют ячейки. При этом главные элементы микро-суперконденсаторов меньше деформируются.

Чтобы создать такую "решетку", исследователи использовали ультратонкие нанолисты цинк-фосфор и трехмерную лазерно-индуцированную графеновую пену - высокопористый самонагревающийся наноматериал. Также команда заметно улучшила электрическую проводимость зарядного устройства. Это доказало, что массивы суперконденсаторов могут эффективно накапливать энергию, необходимую для питания носимого устройства.

Разработчики пошли еще дальше - и дополнили новую систему технологией, которая преобразует механическое движение пользователя в электрическую энергию. Такая комбинация создала систему с автономным питанием.

"Когда у нас есть этот модуль беспроводной зарядки, основанный на трибоэлектрическом наногенераторе, мы можем собирать энергию от движения пользователя - например, сгибания локтя, дыхания или речи", - отмечают авторы.

Другие интересные новости:

▪ Умная платежная карта BrilliantTS

▪ Засуха загрязняет воздух озоном

▪ Влияние генов в формировании эстетического вкуса

▪ Система головного освещения Ford Glare-Free Highbeam

▪ Широкозонные полупроводники для автомобилей

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Аккумуляторы, зарядные устройства. Подборка статей

▪ статья Предчувствие гражданской войны. Крылатое выражение

▪ статья Как путешествует свет? Подробный ответ

▪ статья Наперстянка пурпуровая. Легенды, выращивание, способы применения

▪ статья Новые технологи использования солнечной энергии. Энциклопедия радиоэлектроники и электротехники

▪ статья Автомобильный блок питания для мультиметра, 13/9 вольт 8,9 миллиампер. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025