Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Измерение параметров полевых транзисторов. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Измерительная техника

Комментарии к статье Комментарии к статье

Прибор для проверки основных параметров маломощных полевых транзисторов выполнен на основе недорогих цифровых мультиметров, возможно, даже с неисправными переключателями пределов измерения. Это минимизировало затраты труда по монтажу и изготовлению конструкции. Цифровые показания несколько облегчают сравнение транзисторов и подбор пар для дифференциальных каскадов. Крутизну транзисторов определяют простейшим расчетом.

По роду своей деятельности мне часто приходится ремонтировать контрольно-измерительную аппаратуру с полевыми транзисторами. Они применяются в модуляторах, входных каскадах усилителей в осциллографах и цифровых вольтметрах, коммутационных устройствах и пр. Например, в вольтметре В7-38 установлено около 30 транзисторов серии КП301. Эти транзисторы очень чувствительны к статическому электричеству, и малейшее несоблюдение технологии монтажа приводит к выходу их из строя. Большинство неисправностей приборов, которые связаны с выходом из строя полевых транзисторов, удается устранить простой заменой, но если транзисторы используют в дифференциальных или "симметричных" каскадах, их необходимо подобрать по основным параметрам.

Измерение параметров полевых транзисторов
Рис. 1

К основным параметрам полевых транзисторов относятся начальный ток стока, напряжение отсечки и крутизна характеристики. Определить их, а следовательно, и принять решение о пригодности полевого транзистора к использованию возможно с помощью устройства, схема которого изображена на рис. 1. Изменяя напряжение на затворе и контролируя ток стока, можно узнать все три основных параметра. Для транзисторов с затвором на основе р-n перехода или с изолированным затвором и встроенным каналом начальный ток стока IСнач - это ток стока при нулевом значении напряжения на затворе. Напряжение отсечки U3иотс - напряжение на затворе, при котором ток стока достигает близкого к нулю значения. Крутизна характеристики определяется как отношение изменения тока стока ΔIС (мА) к вызвавшему его изменению напряжения между затвором и истоком ΔUзи (В): S = ΔIС/Δ U3и- Применив в приборе цифровые измерители тока и напряжения, вычислить значение крутизны для транзисторов любой структуры будет несложно.

Крутизна S полевого транзистора с управляющим р-n переходом зависит от напряжения затвор- исток U3и и имеет максимальное значение Smax при напряжении на затворе, равном нулю. Если измерены значения начального тока стока IСнач и напряжения отсечки U3иотс. крутизну можно приблизительно оценить по формулам:

Smax = 2Iснач/Uзиотс

S = √Iснач·Ic/Uзиотс

где напряжение - в вольтах, ток - в миллиамперах, крутизна - в размерности мА/В [1].

Для транзисторов с изолированным затвором крутизну при токе стока Ic и напряжении Uзи можно рассчитать по формуле

S = 2Ic/|Uзи - Uзиотс|

где UЗИотс - напряжение отсечки либо пороговое напряжение (для транзисторов с индуцированным затвором).

На основе макета этого устройства изготовлен прибор для оперативного измерения основных параметров полевых транзисторов и контроля их работоспособности.

Технические характеристики

Измеряемое напряжение на затворе, В ..............-12...+12
Разрешающая способность вольтметра, мВ................10
Измеряемый ток стока, мА . .-20... +20
Разрешающая способность миллиамперметра, мкА.........10
Погрешность измерения IСнач и Uзи, %, не более ...........1
Ток потребления прибора, мА, не более ..................60

Измерение параметров полевых транзисторов
Рис. 2

В приборе есть защита проверяемого транзистора от повреждения.

Схема измерителя изображена на рис. 2. Для изменения напряжения на затворе транзистора используется переменный резистор R2, подключенный к двухполярному источнику питания 2x12 В, что позволяет получить характеристику крутизны любого полевого транзистора малой мощности как с n-каналом, так и с р-каналом. Резистор R3 необходим для ограничения тока затвора. Полярность напряжения на стоке изменяют переключателем SB1. Для исключения перегрузки миллиамперметра использован ограничитель тока на транзисторе VT1 и резисторе R1. Ограничение возникает при токе 25 мА, поскольку максимальный измеряемый ток выбран равным 20 мА. Диодный мост VD1 обеспечивает действие ограничителя при любом направлении тока стока. Реле К1 и К2 предотвращают выход из строя измеряемого полевого транзистора от статического электричества: пока не нажата кнопка "Измерение" SB2, обмотка реле отключена, а контакты для подключения транзистора замкнуты между собой и на общий провод. При измерении кнопка нажата и через контакты реле транзистор подключен к измерительным цепям. Светодиод HL1 сигнализирует о том, что происходит процесс измерения.

Главная часть устройства - миллиамперметр РА1 и вольтметр PV1 - собрана из готовых узлов мультиметров M890D. Основа этих мультиметров - широко известная микросхема ICL7106. Эти приборы выбраны из-за удобного большого корпуса, чтобы снизить трудозатраты при изготовлении измерителя параметров. Питание аналого-цифрового преобразователя (АЦП) мультиметра - от двухполярного источника питания +5/-5 В, необходимого для микросхем АЦП и остальных частей устройства. Микросхема АЦП имеет такую возможность, если мультиметр доработать так, как показано на фрагменте схемы на рис. 3 (нумерация элементов условная).

Измерение параметров полевых транзисторов
Рис. 3

В основном включении, используемом при батарейном питании, выводы 30,32 и 35 соединены вместе. При двухполярном питании вывод 30 (низкоуровневая цепь АЦП) отключают от этой точки. В этом случае микросхема измеряет разность потенциалов между выводами 30 и 31, при этом вход АЦП отвязан от цепей питания. Единственное условие - напряжение в любой из измерительных цепей не должно превышать напряжения питания АЦП относительно общего провода. Такая доработка описана в [2].

При минимальных переделках микросхема обеспечивает измерение напряжения до 200 мВ без делителей. Для построения вольтметра с пределом 20 В, необходимого для измерения напряжения затвора, использован делитель 1:100, состоящий из резисторов R5 и R6. Для построения миллиамперметра с пределом измерения 20 мА служит резистор R7. При токе 20 мА на нем падает напряжение 200 мВ, которое и измеряет АЦП. Миллиамперметр установлен в цепь истока и измеряет ток транзистора. Такое решение продиктовано невозможностью измерять ток в цепи стока, потому что на измерительных выводах миллиамперметра может присутствовать напряжение, превышающее питающее для микросхемы АЦП. Вольтметр включен между затвором и истоком, поэтому через делитель R5R6 будет протекать ток с максимальным значением не более 12мкА, что будет вызывать ошибку в показаниях миллиамперметра в одну единицу младшего разряда, которая оказывается несущественной.

Схема блока питания прибора изображена на рис. 4.

Измерение параметров полевых транзисторов
Рис. 4

Для понижения сетевого напряжения до 12 В используется трансформатор Т1. Далее переменное напряжение выпрямляется диодным мостом VD1 и фильтруется конденсаторами С1, С2. Стабилизаторами двухполярного напряжения +12/-12В служат микросхемы DA1, DA2. Двухполярное напряжение +5/-5 В стабилизирует микросхемы DA3 и DA4. Стабилизаторы включены последовательно для уменьшения падения напряжения на стабилизаторах DA3 и DA4. Схема двухполярного источника питания может быть любой другой; возможно даже использовать автономное питание, например от батарей "Корунд". Для этого потребуется добавить преобразователь напряжения батареи в необходимое для питания остальных узлов измерителя.

Измерение параметров полевых транзисторов
Рис. 5

Детали и конструкция. В приборе можно применить следующие детали. Резисторы R5-R7 - С2-29 или другие с допуском не более ±0,5 %, хотя номиналы могут отличаться от указанных на схеме; главное - стабильность сопротивления. Остальные резисторы - любые, например МЛТ0.125. Переменный резистор R2 - многооборотный, например, РП1-53 или предназначенный для прецизионной регулировки (по груботочной схеме) - СП5-35, СП5-40.

Если найти такой не удастся, резисторы R2 и R3 можно заменить аналогом - узлом из двух переменных и двух постоянных резисторов, как это сделано в моей конструкции. Схема такого узла изображена на рис. 5. Резистором R1 напряжение устанавливают грубо, a R2 - точно.

Светодиод можно заменить другими, например, из серий АЛ 102, АЛ307, КИПД, лучше красного цвета свечения. Диодные мосты - КЦ407 с любой буквой, вместо них можно применить отдельные кремниевые диоды с допустимым средним током не менее 200 мА в выпрямителе и 100 мА - в ограничителе тока. Для упрощения конструкции применены микросхемы интегральных стабилизаторов 7812, 7912, 7805 и 7905, отечественные аналоги которых - соответственно КР142ЕН8Б, КР1162ЕН12А, КР142ЕН5А и КР1162ЕН5А.

Реле - РЭС60 (исполнение РС4.569.435-07) или аналогичные с двумя контактными группами на переключение.

Сетевой трансформатор Т1 -любой, обеспечивающий выходные напряжения 2х 15 В и ток не менее 100 мА, его можно взять из сетевого адаптера мощностью не менее 6 Вт. Вторичную обмотку такого трансформатора перематывают для получения нужного двухполярного напряжения. Трансформатор и выпрямитель размещены в корпусе адаптера, а элементы стабилизатора расположены в корпусе прибора. Прибор соединяется с адаптером трехпроводным кабелем.

Весь измеритель собран в корпусе одного из мультиметров. При изготовлении прибора мультиметры были вскрыты и после удаления ненужных частей плат объединены в одном корпусе, как показано на рис. 6.

Измерение параметров полевых транзисторов
Рис. 6

Лишние детали - резисторы делителя, переключатель и прочее - удаляют (поэтому поводом для изготовления такого прибора может быть неустранимый дефект переключателя подобного мультиметра). Оставляют только часть платы с микросхемой ICL7106, индикатором, элементами "обвязки" микросхемы и индикатора и кнопками включения, которые выполнят роль переключателей SB1, SB2. Печатные проводники, идущие к этим переключателям, должны быть обрезаны.

Нижнюю крышку мультиметра обработке не подвергают, а верхнюю придется доработать. У одного прибора крышку спиливают так, чтобы осталась только часть с индикатором и кнопкой. У второго вырезают середину там, где находится переключатель пределов, и на это место вклеивают вырезанную часть конструкции первого прибора. При вырезании частей от верхних крышек сохраняют стойки, в которые ввинчивают винты-саморезы, скрепляющие верхнюю и нижнюю крышки. Сверху, около кнопки, крепят резистор, регулирующий напряжение на затворе. Снизу устанавливают разъем для подключения полевых транзисторов. В качестве разъема использована цанговая панель для микросхем. Середину панели вырезают, и ряд контактов склеивают. Выбор цанговой панели обусловлен высокой износостойкостью.

В моей конструкции применена небольшая плата из фольгированного текстолита, на которой устанавливают панель, светодиод и реле. В свою очередь, плату двумя винтами крепят к лицевой панели. Лишние отверстия на лицевой панели заклеивают вырезанной по размеру пластиной из пластмассы или электрокартона, на которую приклеивают отпечатанную на принтере накладку, ее вид показан на рис. 7.

Измерение параметров полевых транзисторов
Рис. 7

Большинство транзисторов имеют цилиндрический корпус с меткой-ключом для определения выводов. Контакты разъема для подключения полевых транзисторов соединяются между собой согласно назначению таким образом, чтобы у каждого типа транзисторов было свое место без необходимости уточнять цоколевку. В предлагаемом варианте транзисторы устанавливают ключом вверх. Соединения отдельного вывода корпуса транзисторов с истоком, а второго затвора транзисторов серий КП306, КП350 - со стоком обеспечивают через разъем перемычками между соответствующими гнездами. Внешний вид готового прибора показан на рис. 8.

Измерение параметров полевых транзисторов
Рис. 8

Перед первым включением прибора необходимо проверить значения выходных напряжений стабилизатора. Налаживание прибора заключается в настройке ограничителя тока и установке образцовых напряжений миллиамперметра и вольтметра. Для настройки ограничителя надо подключить образцовый миллиамперметр между контактами "С" и "И" разъема для подключения измеряемого транзистора, нажать на кнопку "Измерение" и подобрать резистор R1, добиваясь показаний 25...30 мА. Можно заранее подобрать транзистор по параметру ограничения тока, тогда резистор R1 заменяют перемычкой. Далее образцовый миллиамперметр последовательно с переменным резистором подсоединяют к этим же контактам, устанавливают ток 10 мА и резистором настройки образцового напряжения добиваются тех же показаний миллиамперметра прибора. Для настройки вольтметра образцовый вольтметр подключают к выводам "3" и "И", резистором прибора устанавливают напряжение затвора 10 В и резистором регулировки вольтметра прибора устанавливают те же показания.

Ввиду того что полевые транзисторы могут выйти из строя из-за статического электричества, может быть рекомендована следующая методика работы с прибором. Перед подключением все выводы полевого транзистора следует замкнуть проволочной перемычкой между собой. На приборе устанавливают тип проводимости канала (n- или p-канал), кнопка "Измерение" отжата. Полевой транзистор подключают к своему гнезду, перемычку с выводов снимают, нажимают на кнопку "Измерение" и контролируют его параметры. После измерения отжать кнопку, замкнуть выводы транзистора между собой и вынуть транзистор из панельки.

С помощью прибора легко диагностировать любой вид неисправности полевых транзисторов. Как показала практика, большинство неисправностей транзисторов сводится к большому току утечки затвора, пробою или обрыву канала либо внутреннему разрыву одного из выводов. Если при нажатии на кнопку "Измерение" напряжение на затворе уменьшится по сравнению с установленным, то имеет место утечка тока с затвора. Показания миллиамперметра не будут нулевыми при любом напряжении на затворе. Во всех других случаях невозможность измерить начальный ток стока и напряжение отсечки говорит о неисправности измеряемого полупроводникового прибора.

Литература

  1. Титце У., Шенк К. Полупроводниковая схемотехника. - М.: Мир, 1983.
  2. Садченков Д. А. Современные цифровые мультиметры. - М.: СОЛОН-Р, 2001.

Автор: В. Андрюшкевич, г. Тула; Публикация: radioradar.net

Смотрите другие статьи раздела Измерительная техника.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Шимпанзе могут менять свои убеждения 10.11.2025

Понимание того, как формируются убеждения и принимаются решения, традиционно считалось уникальной способностью человека. Однако недавнее исследование показало, что шимпанзе обладают способностью пересматривать свои мнения на основе новых данных, демонстрируя уровень рациональности, который ранее считался исключительно человеческим. Психологи под руководством Ханны Шлейхауф из Утрехтского университета провели серию экспериментов, направленных на изучение метапознания у шимпанзе. Исследователи впервые наблюдали, как эти обезьяны могут взвешивать различные виды доказательств и корректировать свои решения при появлении более убедительной информации. Экспериментаторы рассматривали рациональность как способность формировать убеждение о мире на основе фактических данных. При поступлении новой информации разумное существо способно сравнивать старые и новые данные и изменять свое мнение, если новые доказательства оказываются более весомыми. Для экспериментов использовались шимпанзе из ...>>

Полет на Марс: испытание для тела и выживания человечества 10.11.2025

Исследование космоса и перспективы полета на Марс привлекают внимание ученых и инженеров по всему миру. Но за технологическими достижениями скрывается серьезная угроза для здоровья астронавтов. Как отмечает Interesting Engineering, даже самые современные ракеты и системы жизнеобеспечения не способны полностью защитить человека от физических и генетических изменений, возникающих во время длительных космических миссий. Эти риски включают потерю костной массы, ослабление мышц и даже потенциальные повреждения ДНК. Путешествие на Марс длится от шести до девяти месяцев. В условиях невесомости организм, привыкший к земной гравитации, претерпевает значительные изменения. Мышцы атрофируются, кости теряют до 1% плотности в месяц, сердце уменьшается в размерах, а позвоночник удлиняется, вызывая боль и дискомфорт. После возвращения на Землю астронавты сталкиваются с головокружением и проблемами при вставании из-за адаптации к гравитации. Особую опасность представляет перераспределение жидкос ...>>

Зеркальные спутники и их угрозы для астрономии и экологии 09.11.2025

Калифорнийский космический стартап Reflect Orbital, который планирует к 2030 году вывести на орбиту 4 000 зеркальных спутников, отражающих солнечный свет на Землю даже ночью. Главная цель - увеличить эффективность солнечных электростанций, обеспечивая непрерывное освещение в ночное время. Первый демонстрационный аппарат EARENDIL-1 с зеркалом площадью 334 м2 предполагается запустить в апреле 2026 года, а соответствующая заявка уже подана в Федеральную комиссию связи США (FCC). Проект получил 1,25 млн долларов поддержки от ВВС США в рамках программы для малого бизнеса. Идея заключается в том, чтобы спутники создавали дополнительное освещение для энергетических систем, однако многие ученые выражают сомнения как в технической реализуемости, так и в потенциальном вреде для окружающей среды. Астрономы, включая Майкла Брауна и Мэтью Кенворти, подсчитали, что отраженный свет будет примерно в 15 000 раз слабее дневного солнца, хотя и ярче полной Луны. Для того чтобы создать хотя бы 20% дн ...>>

Случайная новость из Архива

Гибрид атомных часов и сверхточных весов 18.01.2013

Физики создали новый вид атомных часов на основе атома цезия, которые можно использовать не только в качестве хронометра и эталона времени, но и как сверхточные весы, что позволит в ближайшем будущем связать эталоны массы и времени, говорится в статье, опубликованной в журнале Science.

"Точность наших часов превышает семь частей на миллиард. Такая погрешность соответствует сдвигу на одну секунду за восемь лет, что примерно соответствует точности первых атомных часов на базе цезия, созданных 60 лет назад. (С другой стороны), эти часы, в комбинации с лучшими сферами Авогадро, помогут нам дать новое определение килограмма. Частота "тиков" в наших часах эквивалентна массе одного атома, а зная ее, мы можем вычислить массу всего образца", - заявил руководитель группы ученых Хольгер Мюллер (Holger Mueller) из университета Калифорнии в Беркли (США).

Как объясняют физики, атомы и электроны представляют собой не только микрочастицы, но и волны. Благодаря этому они обладают теми же свойствами, что и электромагнитные волны, в том числе частотой и амплитудой. Собственная частота колебаний атомов получила название комптоновской, в честь американского физика Артура Комптона, одного из ионеров квантовой механики.

По словам авторов статьи, трудности в измерении и наблюдении за подобными колебаниями делали их практическое использование в качестве "метронома" или часов невозможным. Группа Мюллера смогла преодолеть эти трудности, использовав широко известный "парадокс близнецов". Согласно этому парадоксу, время будет течь медленнее для объектов, путешествующих с достаточно высокой скоростью. Благодаря этому человек, совершивший путешествие к далекой звезде и вернувшийся обратно, будет моложе, чем его брат-близнец на Земле.

Авторы статьи приспособили этот феномен для измерения частоты колебаний атомов цезия. В их экспериментальных часах присутствует два атома-"близнеца". Один из них покоится, а второй - перемещается по емкости с высокой скоростью. Благодаря этому число колебаний, которые будут совершать оба атома за единицу времени, будет заметно различаться. За их поведением следит специальный прибор - атомный интерферометр, показания которого обрабатываются при помощи специального компьютерного алгоритма. Эта программа сравнивает картинки, которые возникают после столкновений лазерного луча и атомов цезия на датчиках интерферометра, и вычисляет комптоновскую частоту одного из них.

Так как эта частота постоянна и зависит лишь от массы частицы, то ее можно использовать в качестве основы для сверхточных часов. Первый прототип атомных часов Мюллера и его коллег не является рекордсменом по точности - он примерно в 100 миллионов раз уступает лучшим аналогам на основе других технологий. С другой стороны, подобные часы можно использовать и для совершенно иных целей, наиболее привлекательной и перспективной из которых выступает создание нового стандарта массы. Как объясняет Мюллер, измерив точное значение комптоновской частоты, можно измерить массу частицы, что позволит точно определить значение килограмма и связать его с секундой.

Другие интересные новости:

▪ Противовоспалительные средства помогают от депрессии

▪ Устройство для контроля сновидений

▪ Искусственное северное сияние

▪ POS-терминал c биометрической идентификацией

▪ Чувствительная дорога

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Электрику. Подборка статей

▪ статья Где стол был яств, там гроб стоит. Крылатое выражение

▪ статья Почему части метро Нью-Йорка несовместимы между собой? Подробный ответ

▪ статья Машинист дорожного катка. Типовая инструкция по охране труда

▪ статья Лаки, протравы и другие средства для кожи и обуви. Простые рецепты и советы

▪ статья Двухканальное зарядно-разрядное устройство. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025