Menu English Ukrainian Russian Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Комбинированный частотомер. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Измерительная техника

Комментарии к статье Комментарии к статье

Особенность предлагаемого частотомера в том, что он помимо основной функции позволяет определить индуктивность различных катушек, резонансную частоту контуров, емкость конденсаторов. Вот почему частотомер назван комбинированным.

Хорошим помощником радиолюбителю-конструктору станет комбинированный прибор, принципиальная схема которого показана на рис.1. Для его изготовления не требуются дефицитные детали, он прост в налаживании и в эксплуатации. Прибором можно измерить частоту сигналов амплитудой 0,1...5 В синусоидальной или прямоугольной формы в диапазоне от 50 Гц до 500 кГц, а также индуктивность от 4 мкГн до 1 Гн.

Для удобства отсчета показаний рабочий диапазон значений разбит на четыре поддиапазона. Первый из них устанавливают при измерении частоты до 500 Гц. Второй - при измерении частоты от 500 Гц до 5 кГц или индуктивности от 40 мГн до 1 Гн. Третий - при частоте сигнала от 5 до 50 кГц, значениях индуктивности 0,4...40мГн. И четвертый поддиапазон- при частоте сигнала от 50 до 500 кГц и значениях индуктивности 4...400 мкГн. Необходимый поддиапазон устанавливают переключателем SA2, а режим измерений (частота или индуктивность)-SA1. Погрешность измерения частоты не превышает 5%.

Принцип работы частотомера основан на преобразовании входного сигнала в последовательность прямоугольных импульсов со стабильной длительностью и амплитудой и последующем измерении микроамперметром среднего значения тока этой последовательности. Упрощенно работу частотомера поясняют эпюры, приведенные на рис.3. Исследуемый сигнал (рис.3, а) подают на вход буферного узла, который выполнен на транзисторе VT1. Назначение узла - обеспечить большое входное сопротивление и минимальную входную емкость частотомера. С выхода узла сигнал поступает через секцию SA1.1 переключателя SA1 на преобразователь, выполненный на элементах DD4.1, DD4.2. Он служит для формирования из входного сигнала произвольной формы последовательности прямоугольных импульсов, которые с выхода элемента DD4.2 (рис.3, б) поступают либо непосредственно на вход инвертора на транзисторе VT2 (если установить первый поддиапазон), либо на вход делителя частоты (при работе на других поддиапазонах), выполненного на счетчиках DD1 - DD3. Каждый из счетчиков делит частоту входного сигнала на 10, поэтому, независимо от того, какой установлен поддиапазон, частота последовательности импульсов на входе транзисторного инвертора будет не более 500 Гц.

На инверторе DD4.3 и элементе DD4.4 выполнен формирователь стабильных по амплитуде и длительности импульсов. Напряжение высокого уровня с коллектора транзистора VT2 (рис.3, в) поступает на вход инвертора DD4.3 и на интегрирующую цепь R8 R9 C6.

На верхнем по схеме входе элемента DD4.4 устанавливается напряжение низкого уровня (рис.3, г), а на его нижнем входе - высокого (рис.3, д), но с временной задержкой, которая зависит от знамения постоянной времени интегрирующей цепи. Длительность задержки регулируют подстроечным резистором R8, а ее значение определяет длительность импульсов t на выходе элемента DD4.4 (рис.3, е).

Среднее значение тока последовательности этих импульсов измеряют с помощью микроамперметра РА1. Значение тока пропорционально частоте входного сигнала.

Комбинированный частотомер
Рис. 1 (нажмите для увеличения)

Комбинированный частотомер
Рис. 2

А как же работает измеритель индуктивности? Для этого режима переключатель SA1 переводят в положение "L". Преобразователь на элементах DD4.1, DD4.2 превращается в генератор, частота которого определяется значением емкости конденсатора С2 и индуктивностью катушки Lх - ее подключают к гнездам Х2, Х3.

Значение частоты измеряют частотомером (его работа описана выше), а индуктивность вычисляют по формуле: Lх = 1/f^2, где Lх - в мкГн, a f - в МГц.

Для удобства отсчета шкалу прибора можно дополнительно проградуировать в значениях индуктивности или изготовить отдельно для каждого поддиапазона пересчетную шкалу и наклеить шкалы на корпус прибора.

Комбинированный частотомер
Рис.3

Точность измерений зависит от стабильности амплитуды импульсов на выходе элемента сравнения DD4.4. Амплитуда, в свою очередь, зависит от стабильности напряжения питания. Вот почему прибор питают через параметрический стабилизатор напряжения, выполненный на транзисторах VT3, VT4. В качестве стабилитрона использован эмиттерный переход транзистора VT4, а в качестве основного источника питания - батарея "Крона" (подойдет "Корунд" или аккумуляторная батарея 7Д-0,115).

Возможности прибора можно расширить, приняв во внимание способность работы микросхем 561ИЕ14 на частотах до 2 МГц и установив еще один делитель частоты (на рис.1 он не показан). Тогда увеличится верхний предел измерений частотомера до 1,5...2 МГц и соответственно расширится диапазон измерений индуктивности - до 1 мкГн. Число поддиапазонов увеличится до пяти.

Также нетрудно предусмотреть возможность измерения резонансной частоты неизвестного контура или значения емкости конденсатора. Для этого необходимо заменить переключатель SA1 на трехпозиционный и установить дополнительные входные гнезда (на рис.1 эти дополнения показаны штриховой линией). Подключив к гнездам Х4, Х5 контур, находят его резонансную частоту - по показаниям частотомера. По известной (или заранее измеренной) индуктивности катушки вычисляют значение емкости по формуле: Сх = 25,33/f^2*L, где f - в кГц, L - в мГн и Сx - в мкФ.

В приборе можно применить следующие детали. Транзисторы: VТ1-КП303А- КП303В; VТ2-VТ4-КТ315А-КТ315И или КТ312А-КТ312В. Конденсатор С2-К73МБМ (если нет возможности подобрать конденсатор такой емкости из имеющихся в наличии, его составляют из нескольких параллельно включенных конденсаторов различной емкости). Подстроенный резистор R8 - СП3-3. Переключатель SA2 - ПГ-2 или П2К.

При отсутствии микроамперметра можно использовать магнитоэлектрическую измерительную головку авометра, например, Ц20 или ТЛ-4 (режим измерений авометра- постоянный ток). В этом случав сам прибор можно выполнить в виде приставки. Необходимо только, чтобы соединительные провода были минимально возможной длины. Для подключения катушек индуктивности можно применить зажимы типа "крокодил".

Монтируют детали прибора (за исключением переключателей SA1, SA2, конденсатора С2 и входного узла) на печатной плате (рис.2) из фольгированного стеклотекстолита. Детали входного узла размещают в корпусе выносного щупа. Это сделано с целью уменьшить значение емкости, которую вносит прибор в измеряемую цепь. Щуп соединяют с прибором экранированным проводом. Гнезда для подключения щупа - от микротелефона. Конденсатор С2 крепят непосредственно между выводами гнезд Х2, Х3.

Налаживание прибора начинают с того, что устанавливают движок резистора R8 в крайнее нижнее по схеме положение, после чего включают питание. Вольтметром контролируют напряжение на конденсаторе С5. Оно должно быть в пределах 5,5...7 В и не изменяться при увеличении напряжения питания прибора от 9 до 12 В. Затем отключают выносной щуп, а переключатель SA1 переводят в положение "F" - измерение частоты. Если стрелка прибора заметно отклонится от нулевой отметки, то это свидетельствует о возбуждении преобразователя (элементы DD4.1, DD4.2). Причиной его могут быть паразитные наводки через близко расположенные соединительные провода переключателей SA1, SA2. Для устранения возбуждения следует развести проводники или установить между выходом элемента DD4.2 и общим проводом конденсатор емкостью до 100 пФ.

Далее подключают измерительный щуп и, замкнув между собой его выводы, вновь контролируют работу преобразователя. Только убедившись в отсутствии возбуждения, приступают к калибровке частотомера.

Переключатель SA2 переводят на первый поддиапазон, а на вход измерительного щупа подают синусоидальный сигнал амплитудой 1...2 В и частотой 500 Гц. Подстроечным резистором R8 устанавливают стрелку микроамперметра на конечную отметку шкалы. Изменяя амплитуду входного сигнала от 0,2 до 5 В, убеждаются в стабильности показаний частотомера. В противном случае выравнивают чувствительность входного узла подбором резистора R2.

Для налаживания измерителя индуктивности переключатель SA1 переводят в положение "L", а SA2 - на четвертый поддиапазон. К гнездам Х2, Х3 подключают катушку, индуктивность которой известна (4... 10 мкГн). По первой из вышеприведенных формул вычисляют значение частоты, а затем подборкой конденсатора С2 добиваются, чтобы показания частотомера соответствовали этому значению.

Смотрите другие статьи раздела Измерительная техника.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Использование Apple Vision Pro во время операций 16.03.2024

Медицинская команда больницы Кромвеля в Лондоне впервые применила Apple Vision Pro в ходе двух операций на позвоночнике. Это событие подтверждает потенциал гарнитуры в качестве медицинского инструмента, изменяющего подход к хирургической практике. Хотя сами врачи не использовали Vision Pro, операционная медсестра работала с виртуальной реальностью, используя очки во время подготовки и выполнения процедур. Гарнитура позволила просматривать виртуальные экраны в операционной, выбирать инструменты и следить за ходом операции. Программное обеспечение, разработанное компанией eXeX, специализирующейся на создании приложений на основе искусственного интеллекта для хирургии, существенно улучшило процесс оказания медицинской помощи пациентам. Использование Apple Vision Pro открывает новые возможности для разработки приложений в сфере здравоохранения, таких как клиническое образование, планирование операций, обучение и медицинская визуализация. Внедрение Apple Vision Pro в медицинскую пр ...>>

Хранение углерода в Северное море 16.03.2024

Министр энергетики Норвегии Терье Осланд объявил о запуске проекта Longship, нацеленного на создание центрального хранилища углекислого газа в Северном море. Этот амбициозный проект оценивается в $2,6 млрд и направлен на применение технологии CCS (углеродного захвата и хранения) для смягчения воздействия климатических изменений. Норвегия уже имеет опыт в области CCS благодаря успешным проектам Sleipner и Snohvit, и сейчас стремится увеличить объем углерода, запечатываемого под морским дном. План Longship предусматривает создание мощности по захвату и хранению 1,5 млн. тонн углерода ежегодно в течение 25 лет. Несмотря на позитивные перспективы, существуют опасения по поводу долгосрочных последствий такого хранения. Однако сторонники проекта утверждают, что морское хранение углерода имеет ряд преимуществ, включая минимальное воздействие на окружающую среду. Проект Longship осуществляется при участии компаний Equinor, Shell и TotalEnergies через совместное предприятие Northern Li ...>>

Выращены мини-органы из амниотической жидкости человека 15.03.2024

Международная команда ученых под руководством профессора Фань Сюлиня из Университета Чжэцзян разработала уникальный способ выращивания мини-органов из клеток, обнаруженных в амниотической жидкости человека. Этот значительный прорыв в медицине может привести к улучшению диагностики и лечения врожденных заболеваний. Органоиды, представляющие собой трехмерные клеточные структуры, имитирующие органы в меньшем масштабе, были выращены из клеток легких, почек и тонкого кишечника, найденных в амниотической жидкости. Этот метод открывает новые возможности для изучения различных состояний плода и может стать ключом к ранней диагностике и лечению врожденных дефектов. Хотя пока не проводились попытки использования этого метода в лечении, ученые надеются, что их исследования в будущем помогут бороться с серьезными врожденными заболеваниями, которые затрагивают миллионы новорожденных ежегодно. Этот прорыв может изменить практику медицинских вмешательств, позволяя диагностировать и лечить врожд ...>>

Случайная новость из Архива

Установлен рекорд по запускам в космос 12.01.2019

В прошлом году Китай установил абсолютный рекорд по количеству запусков в космос. Как информирует Replyua.net со ссылкой на China Daily, в 2018 году китайцы осуществили 39 запусков в космос и обогнали все остальные страны.

Примечательно, что по итогам прошлого года Китай выполнил столько же космических запусков, сколько за весь период 1990-х годов. Также эксперты подсчитали, что китайцы произвели столько запусков в космос в 2018 году, сколько Индия, Евросоюз и Россия вместе взятые. Впрочем, сейчас у Китая все-таки есть конкурент. Это Соединенные Штаты. В 2018 году США осуществили 34 запуска в космос. Напомним, что 11 января китайцы вывели на орбиту коммуникационно-вещательный спутник, который сможет обеспечить работу широкополосного интернета. Для Китая этот запуск стал первым в текущем году. Запуск ракеты был осуществлен с космодрома в провинции Сычуань.

Спутник был разработан сотрудниками китайской корпорации аэрокосмической науки и техники. Его запустили в космос с помощью ракеты-носителя Long March-3B. Нужно отметить, что ранее Китай анонсировал масштабную лунную программу в ближайшие годы.

Другие интересные новости:

▪ Змей и пауков мы боимся с рождения

▪ 13-мегапиксельный модуль камеры для смартфонов Samsung

▪ Причины старческого запаха

▪ Электрическое такси на подводных крыльях Candela P-12

▪ Новая технология утилизации отходов на Международной космической станции

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Электроснабжение. Подборка статей

▪ статья Двойственные изображения. Энциклопедия зрительных иллюзий

▪ статья С каких пор мужчины начали стричь волосы? Подробный ответ

▪ статья Узел Бахмана. Советы туристу

▪ статья Бортовой индикатор отклонения угла ЗСК. Энциклопедия радиоэлектроники и электротехники

▪ статья Чудо-коврик с утками. Секрет фокуса

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





All languages of this page

Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2024