Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Измеритель емкости и ЭПС оксидных конденсаторов - приставка к мультиметру. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Измерительная техника

Комментарии к статье Комментарии к статье

Автор продолжает тему измерения параметров оксидных конденсаторов с помощью приставки к популярным мультиметрам серии 83х. Как и в предыдущих разработках, приставка питается от внутреннего стабилизатора АЦП мультиметра. Измерение ЭПС (ESR) и емкости оксидных конденсаторов можно проводить без их выпаивания из платы.

В статьях [1,2] рассказано о приставке, измеряющей ЭПС оксидных конденсаторов. Было бы значительно удобнее, если бы она измеряла еще и их емкость. Схема такой приставки приведена на рис. 1.

Измеритель емкости и ЭПС оксидных конденсаторов - приставка к мультиметру
Рис. 1. Схема приставки

Основные технические характеристики

  • Интервал измерения ЭПС и сопротивления резисторов, Ом.......0,01...19,99
  • Пределы измерения емкости, мкФ.......200, 2000, 20000
  • Погрешность измерения от 0,1 предельного значения и выше, %.......2...5
  • Максимальный потребляемый ток, мА, не более .......3
  • Время установления показаний, с, не более ....... 4

Приставка состоит из двух измерителей: ЭПС и емкости. Вид измерения выбирают переключателем SA2. В положении "ESR" измеряют ЭПС конденсатора, подключенного к гнездам "Cx" (XS1, XS2), а в положении "C" - емкость.

Схемное решение измерителя ЭПС, как уже упомянуто выше, взято из [1, 2], там же приведено описание работы и налаживания. Добавлен переключатель SA2 (секция SA2.2) для отключения гнезда XS2 от общего провода при измерении емкости и изменено подключение выводов стока и истока транзистора VT3 для исключения шунтирующего влияния его внутреннего диода на точность ее измерения. Уменьшение емкости конденсатора С6 до 0,22 мк сократило время установления показаний до 4 с. Влияние напряжения на конденсаторе С9 на точность измерения ЭПС иключено уменьшением сопротивления резистора R3.

Измеритель емкости собран по известной схеме, опубликованной еще в 1983 г. британским журналом "Wireless World", а в русском переводе - в 1984 г. журналом "Радио" [3].

Низкое выходное напряжение (3 В) и малая нагрузочная способность стабилизатора АЦП мультиметра потребовали применения в измерителе емкости низковольтных ОУ DA1-DA3 Rail-to-Rail и током потребления не более 45 мкА [4]. Напряжение питания -3 В, необходимое для работы измерителя, получено от преобразователя напряжения с высоким КПД на микросхеме DA4, включенной по типовой схеме.

Функциональный генератор, собранный на ОУ DA1.1, DA1.2, DA2.1, вырабатывает двуполярные импульсные сигналы прямоугольной формы на выходе компаратора на ОУ DA1.1 и треугольной - на выходе интегратора на ОУ DA2.1, показанные соответственно на рис. 2,а и б. Узел на DA1.2 - инвертор, обеспечивающий положительную обратную связь. Предел измерения емкости, зависящий от частоты генератора (50, 5 или 0,5 Гц), выбирают переключателем SA1. Амплитуда сигналов треугольной формы на выходе интегратора задана соотношением сопротивлений резисторов R1 и R4 компаратора. Она равна 2 В.

Измеритель емкости и ЭПС оксидных конденсаторов - приставка к мультиметру
Рис. 2. Импульсные сигналы функционального генератора

Эти сигналы, амплитуда которых уменьшена резистивным делителем напряжения R10R11 до 50 мВ, поступают на буферный усилитель с единичным коэффициентом передачи по напряжению, собранный на ОУ DA2.2. Сигнал с его выхода и подают на измеряемый конденсатор Сх, один вывод которого подключают к гнезду XS1. При такой амплитуде этого сигнала измерения в большинстве случаев удается проводить без выпаивания конденсатора из платы.

Гнездо XS2, к которому подключают другой вывод измеряемого конденсатора, соединено через резистор R17 с инвертирующим входом ОУ DA3.2. При подключении конденсатора этот ОУ и резистор R18 образуют дифференциатор, на выходе которого появляются разнополярные импульсы трапецеидальной формы (рис. 2,в). Максимальный входной ток дифференциатора, равный выходному току буферного усилителя, ограничен тем же резистором R18 (R17<

На полевом транзисторе VT4 с изолированным затвором собран синхронный детектор. Применение здесь полевого транзистора с p-n переходом, как в [3], невозможно из-за низкого питающего напряжения. Компаратор на ОУ DA3.1 и полевой транзистор VT1 управляют состоянием синхронного детектора. Рассмотрим его работу с момента подключения конденсатора Сх.

С появлением прямоугольного импульса отрицательной полярности на выходе компаратора на ОУ DA1.1 (рис. 2,а) транзистор VT1 открывается и напряжение питания +3 В поступает на неинвертирующий вход компаратора, собранного на ОУ DA3.1. На его выходе появляется и удерживается напряжение около +3 В (рис. 2,г), поэтому транзистор VT4 закрыт. Такое состояние компаратора и транзистора VT4 сохраняется и при положительной полярности импульса треугольной формы, поступающего с выхода функционального генератора на неинвертирующий вход DA3.1 через резистор R12.

При смене полярности импульса треугольной формы, когда напряжение начинает линейно изменяться от 0 до -2 В (рис. 2,б), транзистор VT1 уже закрыт (напряжение на его затворе + 3 В) и на выходе компаратора от входного отрицательного импульса устанавливается и удерживается на время tH3M напряжение около -3 В (рис. 2,г). Транзистор VT4 синхронного детектора открывается. К этому моменту трапецеидальный импульс положительной полярности на выходе дифференциатора уже имеет максимально плоскую вершину, а значение его амплитуды, как известно, пропорционально измеряемой емкости Сх. С появлением следующего прямоугольного импульса отрицательной полярности на выходе ОУ DA1.1 процесс повторяется.

Продетектированные части трапецеидальных импульсов с выхода детектора (рис. 2,в, д) через резистор R19 поступают на конденсатор С9, который быстро заряжается до их амплитудного значения (рис. 2,е). Резистор ограничивает ток зарядки. С конденсатора С9 постоянное напряжение, пропорциональное емкости Сх, через делитель, образованный сопротивлением резистора R16 и входным сопротивлением мультиметра (1 МОм), поступает на вход "VΩmА" для измерения.

Приставка собрана на плате из фольгированного с двух сторон стеклотекстолита. Чертеж печатной платы показан на рис. 3, а расположение на ней элементов - на рис. 4. Фотоснимки собранной приставки представлены на рис. 5. Одинарный штырь ХР1 "NPNc" - подходящий от разъема. Штыри ХР2 "VΩmА" и ХР3 "СОМ" - от вышедших из строя измерительных щупов для мультиметра. Входные гнезда XS1, XS2 - клеммник винтовой 350-02-021-12 серии 350 фирмы DINKLE. Переключатели SA1, SA2 - движковые серий MSS, MS, IS, например, MSS-23D19 (MS-23D18) и MSS-22D18 (MS-22D16) соответственно. Конденсаторы С2, С3 - импортные пленочные выводные на напряжение 63 В. Все остальные конденсаторы - для поверхностного монтажа. Конденсаторы С1, С4-С7 - керамические типоразмера 1206, C8 - 0808, С9-С11 - танталовые В. Все резисторы - типоразмера 1206.

Транзисторы BSS84 заменимы на IRLML6302, а IRLML2402 - на FDV303N. При иной замене следует учесть, что пороговое напряжение, сопротивление открытого канала и входная емкость (Ciss) транзисторов должны быть такими же, как у заменяемых.

О транзисторе IRLML6346 сказано в статье [1]. ОУ AD8442AR заменим, например, на LMV358IDR. В случае такой замены емкость конденсаторов С2-С4 необходимо увеличить в несколько раз (например, 1, 0,1 и 0,01 мкФ соответственно), а сопротивление резистора R5 уменьшить во столько же раз. Возможно применение и отечественных ОУ КФ1446УД4А, но потребляемый приставкой ток возрастет на1 мА.

Измеритель емкости и ЭПС оксидных конденсаторов - приставка к мультиметру
Рис. 3. Чертеж печатной платы приставки

Измеритель емкости и ЭПС оксидных конденсаторов - приставка к мультиметру
Рис. 4. Расположение элементов приставки на плате

Измеритель емкости и ЭПС оксидных конденсаторов - приставка к мультиметру
Рис. 5. Собранная приставка

Выводы защитных диодов VD3, VD4, микросхемы DA4 и переключателя SA2 в местах, где для них с обеих сторон печатной платы имеются контактные площадки, пропаивают с двух сторон. Аналогично пропаивают штыри ХP1 - XP3, причем ХР2, XP3 закрепляют пайкой в первую очередь, а затем уже "по месту" сверлят отверстие и впаивают штырь ХР1. В отверстие около нижнего по плате вывода резистора R11 вставляют отрезок луженого провода и пропаивают его с двух сторон. Перед монтажом вывод 7 микросхемы DA4 следует отогнуть или укоротить.

При работе с приставкой переключатель рода работ мультиметра устанавливают в положение измерения постоянного напряжения на пределе 200 мВ. Перед калибровкой приставку сначала подключают к автономному источнику питания напряжением 3 В и измеряют потребляемый ток, который не должен превышать 3 мА, а затем подключают к мультиметру. Далее устанавливают переключатель SA2 в положение "С" (нижнее по схеме на рис. 1) и подключают к гнездам XS1, XS2 оксидный конденсатор с заведомо измеренной емкостью. Переключатель SA1 устанавливают на соответствующий предел и резистором R5 добиваются нужных показаний на индикаторе. Если переключатель находится в среднем положении, показания следует умножить на 10, в верхнем по схеме - на 100. Для уменьшения погрешности измерений емкость конденсаторов С2-С4 необходимо подобрать на каждом пределе. На плате предусмотрены контактные площадки для установки дополнительных керамических конденсаторов типоразмера 0805. Обратите внимание, что для облегчения налаживания резистор R5 на плате составлен из двух, соединенных последовательно (на рис. 4 они обозначены R5' и R5'').

Калибровка измерителя ЭПС описана в статье [1]. Если резисторами R14, R15 не удается выставить нулевые показания при замкнутых гнездах "Cx" [5], а это возможно при установке транзистора VT3 с малой проходной емкостью и конечного сопротивления замкнутых контактов секции переключателя SA2.2, следует параллельно выводам затвор-сток транзистора подключить керамический конденсатор емкостью несколько десятков пикофарад и повторить налаживание. На печатной плате для конденсатора типоразмера 0805 предусмотрены контактные площадки. На рис. 6 показана приставка с мультиметром при измерении конденсатора номинальной емкостью 3300 мкФ.

Измеритель емкости и ЭПС оксидных конденсаторов - приставка к мультиметру
Рис. 6. Приставка с мультиметром при измерении конденсатора номинальной емкостью 3300 мкФ

При частом использовании приставки контакты переключателя SA2 могут быть подвержены износу. Нестабильность сопротивления замкнутых контактов секции SA2.2 приведет к увеличению погрешности измерения ЭПС. В таком случае целесообразно вместо механических контактов SA2.2 применить переключательный полевой транзистор, аналогичный IRLML6346 (VT2), с сопротивлением открытого канала не более 0,05 Ома. Вывод истока транзистора соединяют с общим проводом, стока - с выводом истока транзистора VT2, затвора - с выводом 14 DD1.

Файл печатной платы в формате Sprint LayOut 5.0 можно скачать с ftp://ftp.radio.ru/pub/2015/01/ESR-C-meter.zip.

Литература

  1. Глибин С. Измеритель ЭПС - приставка к мультиметру. - Радио, 2011, № 8, с. 19, 20.
  2. Глибин С. Замена микросхемы 74АС132 в измерителе ЭПС. - Радио, 2013, № 8, с. 24.
  3. Преобразователь емкость-напряжение. - Радио, 1984, № 10, с. 61.
  4. CMOS Rail-to-Rail General-Purpose Amplifiers AD8541/AD8542/AD8544. - URL:  analog.com/static/imported-files/data_sheets/AD8541 _8542_8544.pdf.
  5. Технический форум журнала "Радио”. Измеритель ЭПС - приставка к мультиметру. - URL: radio-forum.ru/forum/viewtopic.php?f=1&t=1870&start = 10.

Автор: С. Глибин

Смотрите другие статьи раздела Измерительная техника.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Растения сигнализируют об опасности вулканической активности 17.06.2025

Извержения вулканов - одни из самых разрушительных природных явлений, и своевременное их предсказание является важной задачей для защиты жизни и имущества людей. Современные технологии позволяют отслеживать сейсмическую активность, тепловые аномалии и газовые выбросы, однако ученые из разных стран продолжают искать новые, более ранние признаки приближающейся опасности. Недавнее исследование команды под руководством вулканолога Николь Гвинн продемонстрировало необычный способ раннего обнаружения вулканической активности с помощью изменений в растительности вокруг вулкана Этна - одного из самых активных вулканов Европы. В ходе двухлетних наблюдений ученые выявили 16 случаев, когда увеличение содержания углекислого газа (CO2) в воздухе или почве совпадало с ростом показателя NDVI - нормализованного индекса растительности, отражающего интенсивность фотосинтеза и здоровье зеленых насаждений. Этот индекс широко используется для оценки густоты и жизнеспособности растительного покрова на сп ...>>

Магнит без использования полезных ископаемых 17.06.2025

Технологии все больше зависят от редких и дорогих материалов, добыча которых сопряжена с экологическими и геополитическими рисками. В связи с этим поиск альтернативных решений становится одной из важнейших задач науки и промышленности. Недавно американские ученые во главе с исследователем китайского происхождения Цзянь-Пин Ванг разработали магнит, изготовленный исключительно из железа и азота, который не содержит традиционных редкоземельных элементов. Это открытие может кардинально изменить подход к производству магнитных материалов и значительно снизить зависимость от нестабильных международных поставок. В отличие от широко используемых сегодня магнитов, содержащих редкие полезные ископаемые, такие как самарий и диспрозий, новый магнит отличается более простой и экологичной составной частью. По словам ученых, магнит, созданный из железа и азота, обладает силой магнитного поля, которая превосходит многие известные материалы на рынке. Это делает его перспективной заменой для постоянн ...>>

Скука полезна творческим людям 16.06.2025

Когда информационный поток непрерывно заполняет наше сознание, умение сделать паузу становится особенно важным. Именно в моменты кажущейся скуки мозг получает возможность перезагрузиться и активировать скрытые ресурсы, стимулирующие творческое мышление и саморефлексию. Ученые из Университета Саншайн-Кост в Австралии провели исследование, которое подтверждает, что короткие периоды скуки могут быть полезны для творческих людей и не только. Скука возникает в тот момент, когда способность человека удерживать внимание начинает снижаться, и активируется так называемая сеть пассивного режима мозга. Эта система отвечает за внутренние мысли и саморефлексию, в то время как активность исполнительной сети, которая обычно помогает сосредоточиться, заметно снижается. Таким образом, скука становится не просто неприятным ощущением, а своего рода переключателем, дающим мозгу возможность отдохнуть от постоянной концентрации. Современный ритм жизни сопровождается постоянной стимуляцией симпатическо ...>>

Случайная новость из Архива

Электростанция на воздушном змее 03.09.2002

Австралийский инженер Брайан Роберте намерен получать электроэнергию от высотных воздушных потоков, которые дуют постоянно и с большой скоростью. Для этого он собирается запускать воздушные змеи с ротором, а энергия будет передаваться на землю по трем проводам, удерживающим такой змей на привязи.

Инженер уже получил от местных авиационных властей разрешение на запуск своей конструкции на высоту до 1600 метров, а пока испытывает уменьшенную модель на высоте около 120 метров.

Другие интересные новости:

▪ Любовь к фастфуду приближает деменцию

▪ CDT совершенствует технологию P-OLED

▪ Телевизионный сервис Intel

▪ Миниатюрный датчик бесконтактной идентификации по рисунку вен

▪ Амеба в янтаре

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Начинающему радиолюбителю. Подборка статей

▪ статья Эйнштейн Альберт. Биография ученого

▪ статья Как была открыта вулканизация? Подробный ответ

▪ статья Облицовщик-плиточник. Типовая инструкция по охране труда

▪ статья Оптосимисторный коммутатор мощной нагрузки. Энциклопедия радиоэлектроники и электротехники

▪ статья Биметаллический терморегулятор. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025