Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Измеритель напряжения и тока. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Измерительная техника

Комментарии к статье Комментарии к статье

Один из основных приборов в лаборатории радиолюбителя - регулируемый источник питания. Для повышения оперативности и удобства работы его полезно дополнить встроенным измерителем выходного напряжения и тока нагрузки. Описания таких измерителей довольно часто встречаются в Интернете и радиолюбительских журналах. Но бывает, что найденное описание не подходит для создания измерителя, подходящего для встраивания в конкретный источник питания. Ведь приходится учитывать много факторов, например, располагаемое место для его установки, наличие необходимых деталей. В предлагаемой статье представлен вариант измерителя, который может пригодиться и тем, кто разрабатывает лабораторный блок питания "с нуля", и тем, кто предполагает встроить его в уже готовый блок питания.

Прибор измеряет постоянное напряжение от 0 до 51,1 В с дискретностью 0,1 В и постоянный ток от 0 до 5,11 А с дискретностью 0,01 А. Его прототипом послужил измеритель, описанный в [1], довольно простой по схеме и имеющий неплохие параметры. Основная реализованная в нем идея использовать недорогой микроконтроллер заслуживает внимания. Однако необходимость использовать ОУ, способный работать при однополярном питании при близком к нулю выходном напряжении, а также наличие дополнительного источника питания накладывают некоторые ограничения на его применение. К тому же индикаторы на плате прототипа расположены неудобно, лучше установить их в ряд по горизонтали и сократить размеры передней панели измерителя, приблизив их к габаритам использованных индикаторов.

Принципиальная схема измерителя представлена на рис. 1. Поскольку найти примененные в [1] микросхемы 74HC595N (сдвиговые регистры с регистром хранения) не удалось, использованы микросхемы 74HC164N, в которых регистр хранения отсутствует. Также применены индикаторы, обладающие гораздо более высокой яркостью при малом токе, что позволило уменьшить потребляемый измерителем ток до 20 мА и отказаться от дополнительного стабилизатора напряжения +5 В.

Измеритель напряжения и тока
Рис. 1. Принципиальная схема измерителя (нажмите для увеличения)

К сожалению, использование 74НС164N имеет недостаток - паразитное свечение элементов индикатора в моменты обновления их состояния. Но поскольку средняя яркость такого свечения незначительна и его дополнительно ослабляют светофильтры, которыми обычно закрывают индикаторы, это нельзя считать серьезным недостатком. К тому же освобождается один из выводов микроконтроллера, который можно использовать, например, для подключения датчика температуры. При этом, правда, придется внести изменения в программу микроконтроллера.

Измеряемое напряжение подают на вход GP0 микроконтроллера DD1 через делитель из резисторов R7 и R9. Конденсатор C6 улучшает стабильность показаний вольтметра [1]. Сигнал с датчика тока (резистора R1) поступает на вход GP1 микроконтроллера через инвертирующий усилитель на ОУ DA1. В отличие от [1], здесь используется двухполярное питание ОУ напряжением +/-8 В, поскольку далеко не все ОУ обладают свойством "rail to rail" и корректно работают при однополярном питании и почти нулевом напряжении на выходе. Двухполярное же питание позволяет легко решить эту проблему, допускает применение ОУ очень многих типов.

Поскольку напряжение на выходе ОУ может находиться в интервале от -8 до +8 В, для защиты входа микроконтроллера от перегрузки применена ограничительная цепь R10VD9. Подстроечным резистором R8 регулируют коэффициент усиления, а подстроечным резистором R11 устанавливают нулевое напряжение на выходе ОУ. Диоды VD1 и VD2 защищают вход ОУ от перегрузки в случае обрыва датчика тока.

Благодаря сравнительно малому сопротивлению датчика тока уход результата измерения напряжения при изменении тока нагрузки от нуля до максимального (5,11 А) не превышает 0,06 В. Если измеритель встраивают в источник напряжения отрицательной полярности, датчик тока можно включить перед выходным делителем напряжения его стабилизатора. При этом падение напряжения на датчике тока будет компенсировано цепью обратной связи стабилизатора. Поскольку ток делителя обычно невелик, на показания амперметра он влияния почти не окажет, к тому же это влияние можно скомпенсировать подстрочным резистором R11.

Питают измеритель выходным напряжением выпрямителя блока питания через преобразователь на транзисторах VT1 и VT2. Это несколько сложнее, чем в [1], так как требует изготовления импульсного трансформатора, зато нет проблем с получением всех требуемых номиналов напряжения. Преобразователь напряжения представляет собой простейший двухтактный автогенератор, схема которого позаимствована из [2]. Частота преобразования - около 80 кГц.

Благодаря гальванической развязке между входом и выходом преобразователя измеритель можно встроить в стабилизатор напряжения любой полярности. С указанными на схеме транзисторами он работоспособен при входном напряжении от 30 до 44 В, при этом выходные напряжения изменяются приблизительно от 8 до 12 В. Благодаря тому что сопротивления резисторов R5 и R6 выбраны довольно большими, преобразователь не боится замыканий выходов. В таких случаях генерация просто срывается.

Напряжение 5 В для питания цифровой части измерителя получено с помощью интегрального стабилизатора DA2. Стабилизировать напряжения питания ОУ не требуется, поскольку сам он достаточно устойчив к его изменениям. Напряжение пульсаций с частотой преобразования подавляют RC-фильтры на входах микроконтроллера DD1. Если же слишком велики пульсации с частотой 100 Гц, рекомендуется воспользоваться способом их снижения, описанным в [3].

Здесь стоит сказать несколько слов о присущей всем цифровым измерителям нестабильности младшего разряда результата измерения. Он всегда хаотически изменяется на единицу вокруг истинного значения. Эти флюктуации не являются следствием неисправности прибора, но их нельзя устранить полностью, можно лишь уменьшить, усредняя результаты большого числа измерений.

Детали измерителя смонтированы на трех печатных платах из фольгированного с одной стороны изоляционного материала. Рассчитаны они на установку микросхем в корпусах DIP. На одной плате (рис. 2) смонтированы индикаторы, на второй (рис. 3) - цифровые микросхемы и микроконтроллер. Преобразователь, стабилизатор напряжения питания микроконтроллера и усилитель сигнала датчика тока установлены на третьей плате (рис. 4).

Измеритель напряжения и тока
Рис. 2. Печатная плата, на которой смонтированы индикаторы

Измеритель напряжения и тока
Рис. 3. Печатная плата, на которой смонтированы цифровые микросхемы и микроконтроллер

Измеритель напряжения и тока
Рис. 4. Печатная плата, на которой смонтированы преобразователь, стабилизатор напряжения питания микроконтроллера и усилитель сигнала датчика тока

Размещение деталей на платах и межплатные соединения показаны на рис. 5. Красными цифрами на нем обозначены номера выводов импульсного трансформатора T1 у мест их подключения к плате. Сам трансформатор закреплен на ней хомутами из изолированного монтажного провода. Блокировочные конденсаторы C13 и C14 припаяны непосредственно к выводам питания микросхем DD2 и DD3. Как показала практика, измеритель нормально работает и без этих конденсаторов.

Измеритель напряжения и тока
Рис. 5. Размещение деталей на платах и межплатные соединения (нажмите для увеличения)

Платы микроконтроллера и индикаторов соединены кронштейнами из оцинкованной стали толщиной 0,5 мм. Плата преобразователя и усилителя закреплена двумя винтами М2. Расстояние между платами - около 11 мм. Такой вариант конструкции прибора (рис. 6) занимает меньше места на лицевой панели блока питания, в которую этот прибор должен быть встроен.

Измеритель напряжения и тока
Рис. 6. Монтаж прибора

Вместо ОУ КР140УД708 можно применить, например, КР140УД1408 и множество ОУ других типов.

Следует отметить, что они могут требовать иных цепей коррекции, чем КР140УД708.

Это следует учесть при проектировании печатной платы.

Вместо сдвиговых регистров 74НС164 можно использовать 74НС4015, но придется изменить топологию печатных проводников платы. Диоды КД522Б можно заменить на КД510А. Подстроечные резисторы R8 и R11 - СП3-19, R9 - импортный. Постоянные конденсаторы также импортные.

Резистор R1 (датчик тока) можно изготовить из нихромового провода или применить готовый, как это сделано в [1]. Я сделал его из отрезка нихромовой ленты сечением 2,5х0,8 мм и длиной (с учетом залуженных концов) около 25 мм, извлеченной из теплового реле ТРН. Трансформатор Т1 намотан на ферритовом кольце типоразмера 10х6х3мм, извлеченном из неисправной КЛЛ. Все обмотки намотаны проводом ПЭВ-2 диаметром 0,18 мм. Обмотка 2-3 содержит 83 витка, обмотки 1 -2 и 4-5 - по 13 витков, а обмотка 6-7-8 -

80 витков с отводом от середины. Если выходное напряжение выпрямителя меньше 30 В, число витков обмотки 2-3 придется уменьшить из расчета приблизительно 4 витка на вольт.

Между собой обмотки 1 -2-3 и 4-5 изолированы одним слоем конденсаторной бумаги толщиной 0,1 мм, а от обмотки 6-7-8 - двумя слоями такой бумаги. После проверки работоспособности трансформатор пропитан лаком ХВ-784.

Программа микроконтроллера написана в среде MPLAB IDE v8.92 на языке ассемблера MPASM. Предлагаются два ее варианта. Файлы первого варианта находятся в папке "Общ. катод" и предназначены для прибора со светодиодными индикаторами с общими катодами разрядов, в том числе теми, что указаны на схеме рис. 1. Файлы второго варианта из папки "Общ. анод" следует использовать при установке в прибор светодиодных индикаторов с общими анодами разрядов. Однако на практике этот вариант программы не испытан. Программирование микроконтроллера было выполнено с помощью программы IC-prog и простого устройства, описанного в [4].

Налаживание измерителя заключается в установке подстроечным резистором R11 нуля на выходе ОУ DA1 при отсутствии тока в измеряемой цепи. Затем в эту цепь подают ток, близкий к пределу измерения, но меньше его.

Контролируя ток образцовым амперметром, подстроечным резистором R8 добиваются равенства показаний образцового и налаживаемого приборов.

Подав и контролируя образцовым вольтметром измеряемое напряжение, устанавливают соответствующие показания на индикаторе прибора подстроечным резистором R9. Подробнее о налаживании написано в [1].

Оба варианта программы микроконтроллера можно скачать с ftp://ftp.radio.ru/pub/2016/05/av-meter.zip.

Литература

  1. Балаев Б. Встраиваемый измеритель тока и напряжения на PIC12F675. - Радио, 2014, № 12, с. 18-20.
  2. Янгалиев Н. Блок питания на основе преобразователя напряжения для питания галогенных ламп. - Радио, 2005, № 5, с. 36, 37.
  3. Лоскутов И. Как уменьшить пульсации блока питания. - Радио, 1996, № 4, с. 54.
  4. Сизов А. Программирование современных PIC16, PIC12 на PonyProg. - Радио, 2004, № 2, с. 31, 32.

Автор: Е. Герасимов

Смотрите другие статьи раздела Измерительная техника.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Лабораторная модель прогнозирования землетрясений 30.11.2025

Предсказание землетрясений остается одной из самых сложных задач геофизики. Несмотря на развитие сейсмологии, ученые все еще не могут точно определить момент начала разрушительного движения разломов. Недавние эксперименты американских исследователей открывают новые горизонты: впервые удалось наблюдать микроскопические изменения в контактной зоне разломов, которые предшествуют землетрясению. Группа под руководством Сильвена Барбота обнаружила, что "реальная площадь контакта" - участки, где поверхности разлома действительно соприкасаются - изменяется за миллисекунды до высвобождения накопленной энергии. "Мы открыли окно в сердце механики землетрясений", - отмечает Барбот. Эти изменения позволяют фиксировать этапы зарождения сейсмического события еще до появления традиционных сейсмических волн. Для наблюдений ученые использовали прозрачные акриловые материалы, через которые можно было отслеживать световые изменения в зоне контакта. В ходе искусственного моделирования примерно 30% ко ...>>

Музыка как естественный анальгетик 30.11.2025

Ученые все активнее исследуют немедикаментозные способы облегчения боли. Одним из перспективных направлений становится использование музыки, которая способна воздействовать на эмоциональное состояние и когнитивное восприятие боли. Новое исследование международной группы специалистов демонстрирует, что даже кратковременное прослушивание любимых композиций может значительно снижать болевые ощущения у пациентов с острой болью в спине. В эксперименте участвовали пациенты, обратившиеся за помощью в отделение неотложной помощи с выраженной болью в спине. Им предлагалось на протяжении десяти минут слушать свои любимые музыкальные треки. Уже после этой короткой сессии врачи фиксировали заметное уменьшение интенсивности боли как в состоянии покоя, так и при движениях. Авторы исследования подчеркивают, что музыка не устраняет саму причину боли. Тем не менее, она воздействует на эмоциональный фон пациента, снижает уровень тревожности и отвлекает внимание, что в сумме приводит к субъективном ...>>

Алкоголь может привести к слобоумию 29.11.2025

Проблема влияния алкоголя на стареющий мозг давно вызывает интерес как у врачей, так и у исследователей когнитивного старения. В последние годы стало очевидно, что границы "безопасного" употребления спиртного размываются, и новое крупное исследование, проведенное международной группой ученых, вновь указывает на это. Работы Оксфордского университета, выполненные совместно с исследователями из Йельского и Кембриджского университетов, показывают: даже небольшие дозы алкоголя способны ускорять когнитивный спад. Команда проанализировала данные более чем 500 тысяч участников из британского биобанка и американской Программы миллионов ветеранов. Дополнительно был выполнен метаанализ сорока пяти исследований, в общей сложности включавших сведения о 2,4 миллиона человек. Такой масштаб позволил оценить не только прямую связь между употреблением спиртного и развитием деменции, но и влияние генетической предрасположенности. Один из наиболее тревожных результатов касается людей с повышенным ге ...>>

Случайная новость из Архива

Аксессуар Biostar для добычи криптовалют 22.05.2017

Такие криптовалюты, как Bitcoin, давно уже не добывают с помощью графических карт - такая добыча невыгодна и не окупит даже затрачиваемого на питание нескольких ускорителей электричества. Но существует много альтернативных решений, ряд из которых все еще выгодно добывать с помощью видеокарт или даже центральных процессоров.

Компания Biostar является одной из немногих, кто поддерживает эту группу энтузиастов, выпуская платы со множеством слотов PCIe x1 и дополнительным питанием силовой части PCI Express. Новый аксессуар также предназначен для владельцев криптоферм и для тех, кто только планирует заняться добычей "электронного золота".

Плата под названием Crypto Mining Card позволяет использовать один слот PCI Express x1 для подключения сразу четырех видеокарт с помощью специальных шлейфов-удлинителей. Она может превратить даже скромную материнскую плату формата Micro-ATX в довольно развитую ферму по добыче криптовалют, благо пропускная способность интерфейса PCIe в этом деле совершенно не играет значения. Технически это небольшой адаптер с чипом-коммутатором на борту и четырьмя разъемами USB 3.0, которые таковыми не являются, а представляют собой разъемы для подключения удлинителей, оснащенных механическими слотами PCIe x16. Ошибка в подключении, вероятно, приведет к плачевным последствиям - выходу из строя самой карты или подключенного по ошибке USB-накопителя.

Имеется и стандартный четырехконтактный разъем для подключения блока питания, который в данном случае необходим, ведь электрическая часть слота PCIe x1 будет обслуживать сразу четыре ускорителя. Против ожидания, устройство не универсально, а совместимо только с ограниченным списком системных плат самой Biostar: RACING H170GT3, GAMING H170T, Hi-Fi H170S3H, Hi-Fi B150S1, Hi-Fi B150S1 D4 и TB150 PRO. Вполне возможно, что он будет работать и с другими платами, если только Biostar не заложила какого-либо ограничения на уровне драйверов.

Заявлено о поддержке до восьми графических ускорителей на одну системную плату; теоретически можно попробовать установить и больше, но работать такая связка будет только в среде Linux.

Другие интересные новости:

▪ Вертикальная ферма для промышленного выращивания клубники

▪ Линейный регулятор TPS7A45

▪ Какая книга экологичнее

▪ Эксперимент продолжается полвека

▪ Гибридные процессоры AMD серии A образца 2014 года (Kaveri)

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Усилители мощности. Подборка статей

▪ статья Жан Бодрийяр. Знаменитые афоризмы

▪ статья Бывают ли вещие сны? Подробный ответ

▪ статья Ирис германский. Легенды, выращивание, способы применения

▪ статья Высокачастотный ваттметр и генератор шума. Энциклопедия радиоэлектроники и электротехники

▪ статья Еще о влиянии погоды на распространение коротких волн. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025