Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Любительский ГСС. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Измерительная техника

Комментарии к статье Комментарии к статье

ГСС предназначен для разнообразных измерений в любительской практике как источник синусоидального напряжения звуковой (ЗЧ) и радиочастоты (РЧ). Обладает, по мнению автора, достаточно высокими метрологическими характеристиками. Диапазон частот 15Гц….44,5МГц перекрывается двумя генераторами: звуковой (ГЗЧ) и радиочастоты(ГРЧ).

При этом первый обеспечивает при необходимости амплитудную модуляцию второго. Особенностью ГРЧ является жесткая стабилизация амплитуды выходного напряжения независимо от частоты, наличие резонансного усилителя, контроль уровня несущей и глубины модуляции, наличие достаточно точного аттенюатора для получения калиброванного по величине выходного напряжения на согласованной нагрузке 75 Ом. ГЗЧ - несколько сокращенный вариант генератора, описанного в [1].

Оба генератора имеют дополнительные внутренние выходы для подачи сигнала на частотомер, имеющийся в одном комплекте с ГСС.

Технические характеристики

ГЗЧ

  • Диапазон частот, Гц......15-150000
  • Выходное напряжение, В......0-1,8
  • Ступени выходного делителя, дБ......0;20;40
  • Коэффициент нелинейных искажений %, не более......0,2
  • Выходное сопротивление, Ом......200

ГРЧ

  • Диапазон частот, МГц......0,15-44
  • Поддииапазоны, МГц 1......0,145-0,46
  • 2......0,45-1,44
  • 3......1,43-4,5
  • 4......4,49-14,45
  • 5......14,4-44,5
  • Выходное напряжение, плавно устанавливаемое по шкале  регулятора уровня РЧ, мВ......0-100
  • Ступени ослабления аттенюатором, дБ......0;20;40;60;80
  • Ступени ослабления выносным делителем, дБ......0;20
  • Глубина модуляции от внутреннего ГЗЧ частотой от 15 до 5000 Гц, % при коэффициенте нелинейных искажений не более 5% ......0-80
  • Выходное сопротивление, Ом......75
  • Габариты ГСС, мм без блока питания......160х65х200
  • Потребляемый ток, мА, не более: от источника +12В......110
  • - 12В......40

Принципиальная схема ГСС приведена на рис.1.

Любительский ГСС
(нажмите для увеличения)

ГРЧ состоит из задающего генератора (VT1,VT2), истокового повторителя (VT4), резонансного усилителя - модулятора (VT6), выходного согласующего усилителя (VT7, VT8), аттенюатора, схем контроля выходного уровня и стабилизации (DA6, DA7), схемы дополнительного выхода PЧ на частотомер (VT3, VT5, VT9).

Задающий генератор собран по схеме индуктивной трехточки. Транзистор VT1 включается "в помощь" VT2 в поддиапозонах 4 и 5 благодаря увеличению тока стока VT2 через резистор R7. Выбором R1…R5 и установкой двухсторонних ограничителей VD1…VD10 обеспечивается предварительная стабилизация амплитуды с минимальными искажениями. Амплитуда напряжения PЧ на выходе истокового повторителя VT4 находится в пределе 1,1-1,3В на всех поддиапазонах и лишь на пятом может достигать 1,8В. Далее через корректирующие цепи R11, R12, С7, C8 напряжение PЧ поступает на первый затвор резонансного усилителя - модулятора VT6. На четырех поддиапозонах для выравнивания нагрузки каскада применена трансформаторная связь с контуром, на 5-м - полное включение контура в цепь стока. Контур усилителя перестраивается одновременно с контуром задающего генератора.

Коммутация поддиапозонов осуществляется переключателем SA1. При этом он доработан таким образом, что секции SA1.2 и SA1.5 замыкают на корпус контурные катушки всех неработающих поддиапозонов, частоты которых ниже по сравнению с включенным. Схемное изображение этих секций пытается отобразить конструктивное исполнение, о котором будет идти речь ниже, а автор не нашел общепринятого изображения такого случая.

С контура усилителя модулятора напряжения поступает на согласующий каскад - составной повторитель (VT7. VT8), нагрузкой которого является R31- плавный регулятор уровня PЧ. R31 отградуирован от 0,1 до 1 мВ. С движка R31 через согласующие цепи сигнал поступает на вход ступенчатого аттенюатора. Схема обеспечивает постоянство выходного сопротивления регулятора уровня РЧ. Аттенюатор представляет собой набор делителей от 0 до 80дБ через 20дБ, переключаемых SA2. В положении "Х100" нет ослабления, в положении "Х10" включается ступень 20дБ, в положении "Х1" - две ступени по 20дБ, в положении "Х0,1" - две ступени по 30дБ, в положении "Х0,01" - три ступени ослабления соответственно 27,26 и 27дБ. Секции SA2.2 и SA2.3 замыкают на корпус все входы и выходы аттенюатора, имеющие меньшую степень ослабления по сравнению с выбранной. С выхода аттенюатора сигнал поступает на SW2 выхода РЧ, к которому посредством 75 омного ВЧ кабеля длинной 70 см подключена нагрузка с дополнительной степенью ослабления в 20дБ. Необходимо обратить внимание на номиналы резисторов аттенюатора и прилегающих цепей (R38….R56). Эти номиналы получены расчетным путем и округлены с точностью до ±0,25%.

Контроль выходного напряжения ГРЧ производится в точке соединения коллектора VT8 и регулятора уровня. Здесь посредством схемы стабилизации должен жестко поддерживаться уровень в 1В. Для этого напряжение выпрямляется детектором с удвоением VD14, VD15 и обрабатывается ОУ DA6 с компенсирующими диодами VD18, VD19 в цепи обратной связи. Через диоды течет начальный ток смещения благодаря R82, R83. Если все упомянутые диоды достаточно идентичны между собой, то получим достаточно линейную характеристику детектора от десятой доли до единицы вольта.

Напряжение с выхода детектора сравнивается DA7с эталонным напряжением, установленным подстроечным резистором R92. Выход DА7 поступает на второй затвор усилителя - модулятора, чем и осуществляется стабилизация выходного напряжения ГРЧ. Если с выхода ГЗЧ через цепь R91, C58 подать напряжение звуковой частоты в цепь формирования эталонного напряжения, то получим амплитудную модуляцию. Глубина модуляции регулируется изменением выходного напряжения ГЗЧ.

Для получения дополнительного немодулированного выхода РЧ на частотомер сигнал поступает на затвор VT3, затем на базу VT5. С эмиттера VT5 напряжение через диодный коммутатор VD11, VD12 и далее еще через один повторитель VT9 поступает на дополнительный выход РЧ. Диодный коммутатор управляется из блока питания через контакт XT1. При выключении частотомера на контакт ХТ1 из блока питания вместо +12В поступает напряжение минус 12В, что вызывает запирание диодного коммутатора и транзистора VT9.

Кажущиеся схемные "излишества" объясняются требованием исключить пролезание РЧ через дополнительный выход при проверке высокочувствительной аппаратуры, когда бывает необходимо выключить частотомер для исключения наводок и, одновременно, избежать влияния состояния диодного коммутатора на частоту задающего генератора.

ГЗЧ собран на ОУ DA2…DA4 и транзисторе VT10 и практически повторяет конструкцию, описанную в [1]. Для уменьшения постоянной составляющей на выходе DA2…DA4 установлены резисторы балансировки.

Каскад VT11, VT12 обеспечивает дополнительный выход ЗЧ на частотомер.

Для контроля выходного уровня обоих генераторов используется пиковый вольтметр на DA5 с измерительной головкой PA1.

Внешний вид шкалы измерителя выхода показан на рис.2.

Любительский ГСС
Рис.2

Верхняя шкала отградуирована в эффективных значениях, нижняя в процентах модуляции. Переключатель выхода вольтметра сблокирован с выключателем ГРЧ и при обесточивании последнего вход вольтметра переключен к выходу ГЗЧ. По верхней шкале проводится отсчет напряжения звуковой частоты на выходе XS4 “x1". Если включается ГРЧ, вольтметр подключается к выходу детектора, вернее к его делителю R86. При отсутствии модуляции стрелка измерителя должна четко быть против отметки 1В по верхней шкале и против 0% по нижней на любой частоте, что говорит о нормальной работе схемы стабилизации амплитуды выходного напряжения ГРЧ. При увеличении от нуля выходного напряжения ГЗЧ по нижней шкале отсчитывают глубину модуляции. В любом случае выходное напряжение ГРЧ отсчитывают по шкале регулятора R31 “mV" и умножают на показания аттенюатора и выходного делителя. У примененного пикового вольтметра имеется некоторый недостаток, который нужно учесть в работе. Сказывается инерционность DA5 на частотах более 10кГц: на частотах 20кГц завал 1дБ, на частоте 100кГц - 2дБ. При измерении выходного напряжения ГРЧ это не сказывается, так как там свой детектор.

ГРЧ и ГЗЧ имеют отдельные выключатели питания. Каскад VT13 коммутирует минус 12В для ГРЧ в связи с недостачей контактов SA4.

Питание задающего генератора и усилителя - модулятора +8В обеспечивает микросхемный стабилизатор DA1.

Все основные узлы ГРЧ размещены в блоке ВЧ с двойным экранированием. Блок ВЧ размерами 132х62х90мм спаян из двухсторонне фольгированного стекло текстолита толщиной 1,5мм.

Конструкция блока ВЧ (вид сверху) показано упрощенно на рис.3.

Любительский ГСС
(нажмите для увеличения)

Верхняя, нижняя и боковые стенки спаяны при помощи четырех уголков из белой жести, наложенных на углы. Продольной перегородкой генератор отделен от аттенюатора, а они в свою очередь разделены поперечными перегородками на отсеки, стыки пропаяны. После монтажа и отладки крышки отсеков пропаяны. Внешние боковые стороны блока ВЧ не имеют электрического контакта с внутренними экранами. В перегородку аттенюатора впаяны тонкостенные латунные трубки длинной около 32мм и внутренним диаметром около 5мм от колена телескопической антенны. Внутри трубок помещены резисторы аттенюатора как показано на выноске А рис.3.

Для корпуса ГСС использован литой корпус неизвестного назначения из алюминиевого сплава, с передней и задней крышками, с внутренними перегородками. Блок ВЧ помещен внутри этого корпуса, внутренний экран блока соединен с внешним корпусом в одной точке внешней оболочкой отрезка ВЧ кабеля, соединяющего выход аттенюатора с выходным гнездом XW2. Гнездо XW2 размещено на лицевой крышке внешнего корпуса. Оси органов управления ГРЧ изолированы от внешнего корпуса изолированными удлинителями или трубками. Блок КПЕ (от "Спидолы") через фрикцион связан с ручкой плавной установки частоты.

Монтаж выполнен небольшими функциональными модулями на платах из двухсторонне фольгированного стеклотекстолита планарно. Печатные платы не разрабатывались. Дорожки и контактные площадки вырезались резаком.

Данные катушек контуров помещены в табл. 1.

Таблица 1

Любительский ГСС

Катушки поддиапазонов 1…3 помещены в броневые сердечники из карбонильного железа СБ-12а и намотаны внавал на трехсекционных каркасах, а поддиапазонов 4 и 5 - намотаны однослойно на полистироловые каркасы ø5,5 мм, имеющие подстроечники из карбонильного железа РМ4х11,5 (такие каркасы применялись в телевизорах "ВЛ-100", "Электроника"). Катушки связи намотаны в средние секции многоспайных катушек, а катушка L11 поверху L15 пошагово с ней со стороны заземленного конца.

Подстроечные конденсаторы С17…С21 малогабаритные импортного производства емкостью 2…10 pF.

Переключатели SA1 и SA2 применены типа ПГ3-5П10Н с доработкой. Лишние секции удаляются, а по две секции каждого дорабатываются. Один из двух "ножей" в секции удаляется и заменяется более широким. Лишние контакты удаляются.

Результат показан на рис.4. Слева - исходное положение "1" в соответствии со схемой. Широкий "нож"-сектор не участвует в работе. Справа - положение "4", при котором широкий сектор замыкает на корпус выводы с первого по третий. Переключатель SA3 типа ПР-4П4Н. Резистор R61 типа СП3-30г с функциональной характеристикой А. Резисторы R31, R64, R74, R92 типа СП4-1а, резистор R86 проволочный СП5-1в, R68, R80, R84 - СП3-19б.

Любительский ГСС

ОУ лучше сбалансировать до монтажа и установить с подобранными постоянными резисторами. О резисторах R38… R56. Лучший вариант - С2-10 ближайших номиналов ряда Е192. Автору не удалось. В действительности в магазине было куплено примерно по 20шт ближайшего меньшего номинала резисторов, похожих на МЛТ. Цифровым прибором класса 0,25% были отобраны подходящие экземпляры. В случае необходимости величина их подгонялась на тонком наждачном круге с последующим покрытием масляным лаком.

Особо следует отметить: купленные резисторы не имели спиральной нарезки. Для подбора диодов VD14, VD15, VD18, VD19, было взято 24 образца и всем сняты ВАХ при токах от 0,05 до 4 мА. По характеристикам было отобрано четыре наиболее близкие. В качестве измерителя применена головка от вольтметра М42100 класса 1,5 с током полного отклонения 1мА, которая была помещена в малогабаритный корпус от индикатора уровня магнитофона "Весна".

Любительский ГСС

Любительский ГСС

Любительский ГСС

Дроссели на 100мкГн - стандартные, L19, L20 - любого типа с индуктивностью не менее 1 млГн. SA4, SA5 - микротумблеры МТ-3. Внешние виды ГСС приведены на рис.5 и рис.6. На рис.7 показан внешний вид ГСС со стабилизированным блоком питания и частотомером в одном блоке.

При правильном монтаже и предварительной балансировке ОУ подгонки режимов не требуется. В начале налаживают ГЗЧ, о чем подробно описано в [1]. Резистором R64 устанавливают максимальное напряжение на выходе XS4 около 2В. Частотомером градуируют шкалу ГЗЧ. Установив частоту ГЗЧ 1000Гц и подключив к XS4 образцовый вольтметр, градуируют верхнюю шкалу измерителя выхода, установив максимальное значение шкалы 1,8В. На нижней шкале наносят отметки 0% против отметки 1В верхней шкалы, 30% - против отметки 1,3В, 60% - против 1,6В. При применении измерителя на другое значение тока полного отключения необходимо параллельно с подбором R87 изменить величину С55 для сохранения прежней постоянной времени.

Далее отключают ГЗЧ. На блок ВЧ ГРЧ устанавливают временные крышки с отверстиями для возможности регулировки подстроечников индуктивности и емкости. Включают ГРЧ. Осциллографом (например С1-65А), с входным делителем, проверяют амплитуду и форму сигнала на всех поддиапазонах на выходе истокового повторителя VT4. В случае необходимости вносят коррекцию изменением резисторов R1… R5 в небольших пределах. Подав на ХТ1 +12В при помощи частотомера (на выходе XW3) производят укладку границ поддиапазонов. Затем подключают осциллограф на выход РЧ (XS1), устанавливают аттенюатор в положение "х100", регулятор выхода "mV" на максимуму и производят настройку контуров резонансного усилителя как обычно по максиму. При этом подстроечником R92 поддерживают выходное напряжение в пределах 50…150мВ. Удобно также настройку производить включив ГЗЧ, установив на частоту 1000Гц, и регулятором выхода ГЗЧ установив глубину модуляции 50…70%. Момент точной настройки усилителя регистрируется по максимальному размаху и минимуму искажений огибающей.

Далее по частотомеру устанавливается на ГСС частота 1МГц. К гнезду XS1 "Х1" выносного делителя подключают высокочастотный милливольтметр с входным малоемкостным делителем, например В3-56. Регулятор "mV" устанавливают в положение, близкое к максимальному. ГЗЧ выключают. Подстроечником R92 устанавливают по милливольтметру на выходе 100мВ. Подстроечником R86 устанавливают стрелку измерителя выхода на отметку "1В" (или 0% по нижней шкале). Далее в замен временных крышек устанавливают на блок ВЧ постоянные и запаивают их. Собирают ГСС окончательно и устанавливают переднею панель (из фольгированого стеклотекстолита, оклееную черной бумагой).

Проверяют все установки. Производят градуировку по частоте частотомером. Далее проверяют установки R92 и R86, после чего градуируют шкалу регулятора выхода РЧ "mV", нанося деления от 0 до 1мВ через 0,1мВ в соответствии с показаниями образцового ВЧ милливольтметра. В доном случае все надписи производились белой гуашью рейсфедером и перьевой ручкой. После этого передняя панель два раза покрывалась лаком ПФ-283. После сушки первого покрытия удаляется ворс мелкой шкуркой и подправляются надписи.

Литература

  1. А.Худошин "Широкодиапазонный генератор сигналов". Радио №4 1988 г., стр.46

Автор: С.Дробинога, г.Полтава, Украина

Смотрите другие статьи раздела Измерительная техника.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Кислотность океана разрушает зубы акул 03.10.2025

Мировые океаны выполняют важнейшую функцию - они поглощают около трети углекислого газа, выбрасываемого в атмосферу. Это помогает замедлять темпы глобального потепления, но имеет и обратную сторону. Растворяясь в воде, CO2 образует угольную кислоту, которая повышает концентрацию водородных ионов и приводит к снижению pH. Вода становится более кислой, а последствия этого процесса уже заметны для морских экосистем. Средний показатель кислотности океана сейчас равен примерно 8,1, тогда как еще недавно за условную норму брали значение 8,2. По прогнозам, к 2300 году уровень может упасть до 7,3 - это сделает океан почти в десять раз кислее нынешнего состояния. Для обитателей морей подобные изменения означают не просто сдвиг химического равновесия, а реальную угрозу физиологическим процессам, начиная от формирования раковин у моллюсков и заканчивая охотничьим поведением акул. Чтобы выяснить, как именно кислотная среда отражается на зубах акул, группа немецких исследователей провела эксп ...>>

Почтовый космический корабль Arc 03.10.2025

Космические технологии становятся частью инфраструктуры, способной повлиять на логистику, медицину и даже военную сферу. Идея использовать орбиту как глобальный склад для срочных поставок звучала еще недавно как научная фантастика, но стартап Inversion пытается превратить ее в практическое решение. Компания Inversion появилась в начале 2021 года благодаря Джастину Фиаскетти и Остину Бриггсу, которые на тот момент были студентами Бостонского университета. Их замысел состоял в том, чтобы сделать возможной доставку грузов не только через спутниковые сети данных, но и в буквальном смысле - физических предметов. В основе лежит простая мысль: если космос обеспечивает доступ к любой точке Земли, то и грузы должны перемещаться тем же маршрутом. Уже за три года работы команда из 25 специалистов успела построить демонстрационный аппарат "Ray". Его запуск состоялся в рамках миссии SpaceX Transporter-12. Устройство весом 90 килограммов проверяло ключевые технологии Inversion, включая двухком ...>>

Лазерное обогащение урана 02.10.2025

Ядерная энергия остается одним из ключевых источников стабильного электричества, особенно для стран с растущими потребностями в энергоснабжении. Однако обеспечение бесперебойных поставок топлива для атомных станций требует современных технологий обогащения урана, которые одновременно эффективны и безопасны. Американская компания Global Laser Enrichment (GLE) делает значительный шаг в этом направлении, завершив масштабное тестирование лазерной технологии обогащения урана. Демонстрационная программа была проведена на объекте в Уилмингтоне, Северная Каролина. Тестирование технологии SILEX (Separation of Isotopes by Laser EXcitation), разработанной австралийской Silex Systems, стартовало в мае 2025 года и продлится до конца года. В ходе экспериментов компания планирует получить сотни фунтов низкообогащенного урана (LEU), который может быть использован в качестве топлива для атомных электростанций. GLE была создана в 2007 году для коммерциализации лазерных методов обогащения урана в С ...>>

Случайная новость из Архива

Очистка воды и почвы от кадмия 22.05.2022

Китайские ученые нашли новый способ очистки воды и почвы от кадмия с помощью магнитной углеродной микросферы на основе железа, полученной путем совместной гидротермальной обработки железных отходов и жидких табачных отходов.

В связи с быстрым развитием металлургии, гальванизации, производства красителей и аккумуляторов, горнодобывающей промышленности и других отраслей проблема загрязнения кадмием становится все более серьезной.

Исследование было проведено под руководством У Чжэнъяня из Института интеллектуальных механизмов Академии наук Китая и Цай Дунцина из Университета Дунхуа. В результате был найден новый способ очистки загрязненных кадмием воды и почвы, а также новый способ утилизации жидких отходов табачной промышленности и отходов железа, которые могут загрязнять окружающую среду.

В ходе научной работы, которое длилось около года, было подсчитано, что 12 тонн углеродных микросфер на основе железа, полученных из 10 тонн отходов железа и 20 тыс. литров жидких табачных отходов, могут быть использованы для очистки 120 тыс. литров воды от кадмия с концентрацией 10 мг на литр.

Другие интересные новости:

▪ Время и качество сна зависит от пола

▪ Пора кипятить белье

▪ Внешняя панорамная камера для смартфонов Huawei EnVizion 360

▪ Алмаз рассказывает о происхождении жизни

▪ Океан превращается в пластик

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Видеотехника. Подборка статей

▪ статья Характеристика системы Человек – Социальная среда в общем контексте безопасности жизнедеятельности. Основы безопасной жизнедеятельности

▪ статья Почему английский король Генрих VI запретил игру в гольф? Подробный ответ

▪ статья Бенинказа. Легенды, выращивание, способы применения

▪ статья Шумовой мост, для настройки антенн. Энциклопедия радиоэлектроники и электротехники

▪ статья Угадывание одной из 16 карт. Секрет фокуса

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025