Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Измеритель LC. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Измерительная техника

Комментарии к статье Комментарии к статье

Хочу предложить измеритель LC с прямым отсчетом. Данный пробник, несмотря на свою простоту, обладает большими возможностями. Он позволяет измерять:

  • емкость конденсаторов (не выпаивая их из схемы);
  • индуктивность;
  • частоту сигналов (TTL-уровня);
  • тангенс угла и сопротивление потерь конденсаторов;
  • магнитную проницаемость сердечников;
  • добротность катушек индуктивности;
  • наличие короткозамкнутых витков в катушках. Схема пробника показана на рис. 1.

Измеритель LC
Рис. 1 (нажмите для увеличения)

На элементах DD1 и DD2 собран генератор, времязадающим элементом которого является измеряемая емкость или индуктивность. На элементах DD3 и DD4 собран делитель частоты с максимальным коэффициентом деления 16777211. Вся шкала пробника включает 25 значений, отличающихся друг от друга в 2 раза. При работе пробника визуально определяется, частота мигания какого светодиода ближе всего к 1 Гц. Показания напротив него и являются результатом измерения. Диод VD2 защищает прибор от переполюсовки питания.

Измерение емкости. Перед измерением конденсатор необходимо разрядить. Переключатель S1 поставить в разомкнутое положение (измерение емкости). В зависимости от необходимой точности, измерение можно провести тремя способами.

Технические характеристики:

  • Номинальное напряжение питания, В......4,3
  • Ток потребления, мА, не более......45
  • Диапазон измеряемой емкости, мкФ......80*10-6...25*103
  • Диапазон измеряемой индуктивности, Гн......2,5*10-6...40
  • Диапазон измеряемой частоты, Гц......1...16*106
  • Амплитуда напряжения на щупах при измерении емкостей, В......0,35
  • Амплитуда напряжения на щупах при измерении индуктивностей, В......10
  • Минимальная добротность индуктивностей......11

Способ 1. К щупам пробника подключается измеряемый конденсатор (его можно не выпаивать из схемы) и определяется, какой светодиод мигает с частотой около 1 Гц. На шкале против него читается значение емкости.

Способ 2. Для более точного измерения емкости нужно сделать все как в способе 1, только смотреть на светодиод, который мигает с частотой, большей чем 1 Гц, подсчитать количество миганий за 10 с, и вычислить частоту миганий, разделив подсчитанное количество на 10. Показание напротив этого светодиода разделить на полученную частоту. Результат и будет значением емкости конденсатора.

Способ 3. Для еще более точного определения емкости можно воспользоваться осциллографом или частотомером. Причем при использовании осциллографа можно оценить и качество проверяемого конденсатора (определить тангенс угла потерь). Подключив осциллограф или частотомер к щупам пробника, этими же щупами нужно коснуться проверяемого конденсатора. Если конденсатор имеет малые потери, то вид осциллограмы будет такой, как показано на рис. 2а. При больших потерях вид осциллограммы будет такой, как на рис. 2б. Определите величину периода Т и по формуле (1) подсчитайте емкость конденсатора:

С=T/40-5*10-9 (Ф). (1)

При ремонте радиоаппаратуры достаточно измерить емкость конденсатора по способу 1. Если полученное значение емкости меньше номинала, указанного на конденсаторе, в 2 и более число раз, такой конденсатор необходимо заменить.

Измеритель LC
Рис. 2

Измерение индуктивности. Индуктивность, так же как и емкость, можно измерить тремя способами.

Способ 1. Он аналогичен способу 1 для измерения емкостей. Только переключатель S1 нужно замкнуть.

Способ 2. Аналогичен способу 2 для измерения емкостей конденсаторов. Переключатель S1 поставить в положение для измерения индуктивности (замкнуть).

Способ 3. Аналогичен способу 3 для измерения емкостей. Индуктивность рассчитываем по формуле

L = 40*Т (Гн), (2)

а вид осциллограмм для катушек с малыми и большими потерями приведен на рис. За и 3б соответственно. Значения емкостей конденсаторов и индуктивностей катушек с потерями, определенные с помощью пробника, будут содержать погрешность - тем большую, чем больше эти потери.

Измеритель LC
Рис. 3

Измерение частоты сигнала. Пробник позволяет измерять частоту сигнала ТТЛ-уровня, при условии, что питание пробника гальванически развязано от питания проверяемой цепи. Переключатель S1 необходимо поставить в положение для измерения индуктивности. Одним щупом коснитесь общего провода, а другим - источника сигнала. Напротив светодиода, мигающего с частотой около 1 Гц, прочитайте показания частоты сигнала. Для более точного определения частоты можно воспользоваться способом 2.

Определение тангенса угла потерь конденсаторов. Тангенс угла потерь (tg d) точно можно определить с использованием осциллографа.

Способ 1. Для этого необходимо подключить к щупам пробника осциллограф и проверяемый конденсатор. Если осциллограмма выглядит как на рис. 2б, конденсатор имеет потери, величину которых можно вычислить. Конденсатор с потерями можно заменить эквивалентной схемой - последовательно соединенными конденсатором и сопротивлением потерь. Тогда тангенс угла потерь равен:

tg d = Rп/Xc = Rп/(2*pi*f*C), (3)

где Rп - сопротивление потерь (Ом); Хc - реактивное сопротивление конденсатора (Ом); f - частота, на которой работает конденсатор (Гц); C - емкость конденсатора (Ф).

Для данного пробника:

Rп = Uп/0,03 (Ом). (4)

Uп - измеряется по осциллографу, согласно рис. 2,б. При подключении к пробнику конденсатора, период Т, с учетом сопротивления потерь Rп, равен:

T = 3,33*(12-Rп)*(C + 5*10-9) (c) (5)

Если в данную формулу подставить Rп=0, то получается формула (1).

Способ 2. Измерьте емкость конденсатора с помощью пробника. Если пробник показал емкость в 2 или более число раз меньшую, чем номинал конденсатора (обозначенный на нем), данный конденсатор имеет большое сопротивление потерь Rп, а соответственно, и большой tg d. Тогда, согласно формуле (5), можно найти сопротивление потерь. Результаты расчета сведены в таблицу:

Измеритель LC

В верхней строке таблицы - кратность показаний пробника (во сколько раз емкость конденсатора меньше емкости, обозначенной на корпусе конденсатора. В нижней строке - соответствующее сопротивление потерь.

Определение добротности катушек индуктивности. Определите индуктивность катушки L1. Омметром (желательно цифровым) измерьте активное сопротивление катушки R. Подсчитайте реактивное сопротивление на заданной частоте.

XL= 2*pi*f*L (Ом), (6)

где XL - реактивное сопротивление катушки (Ом); f - рабочая частота (Гц); L - индуктивность катушки (Гн).

Добротность катушки индуктивности рассчитывается по формуле;

Q = XL/R. (7)

На данном пробнике показания заметны при Q>11.

Измеритель LC
рис. 4.

Определение магнитной проницаемости сердечника из феррита. Рассмотрим три вида сердечников (рис. 4). Рассчитаем величины, необходимые для определения магнитной проницаемости сердечников.

lМ=(D + d)*pi/2 (9)

SМ=(D - d)*h/2 (10)

lМ=2*(А+В-2*С) (11)

SМ=h*c (12)

lМ=2*(h+а+с)+3/2*а (13)

SМ = a*b (14)

Формулы (9) и (10) используются для кольца, (11) и (12) - для П-образного, а (13) и (14) - для Ш-образного сердечника. Все размеры в формулах (9)...(14) берутся в сантиметрах.

Намотайте не менее 15 витков провода (внавал) на сердечник и измерьте пробником полученную индуктивность, (для Ш-образного сердечника витки нужно мотать по размеру а). Эффективная магнитная проницаемость сердечника рассчитывается по формуле

uэ=(L*lМ)/(u0*n2*SМ) (15)

где L - индуктивность катушки, намотанной на данный сердечник (Гн);

lм - длина средней магнитной силовой линии (см);

SM - площадь сечения магнитопровода (см2);

u0 - магнитная проницаемость вакуума (u0=4*pi*10-9 Гн/см);

n - количество витков.

Выявление короткозамкнутых витков. Для определения наличия короткозамкнутых витков в катушках, намотанных на кольцеобразных, П-образных и Ш-образных сердечниках, необходимо сравнить индуктивность, измеренную пробником, и расчетную:

L=u0*uэ*n2*Sм/lм, (16)

где uэ - эффективная магнитная проницаемость для ферритовых материалов (указывается на них). Если она неизвестна, ее можно определить так, как описано выше.

Если индуктивность, определенная пробником, меньше в 2 и более раз, чем расчетная, то в катушке имеются короткозамкнутые витки.

Детали. Формулы (1, 2, 4, 5) верны только для пробника, собранного на микросхемах 74НС00. Если генератор пробника собрать на микросхемах других серий, в том числе и отечественных, в формулах появятся поправочные коэффициенты. При выборе микросхем нужно помнить, что:

  • размах напряжения на щупах пробника не должен превышать 0,3...0,4 В, чтобы не открывались р-n переходы не только кремниевых, но и германиевых транзисторов и диодов. Это позволяет проверять конденсаторы, не выпаивая их из плат;
  • ИМС должны быть достаточно быстродействующими (шире диапазон измерения);
  • при использовании некоторых серий необходимо подключить конденсатор С6 1000 пФ...0,01 мкФ (рис. 1) для устойчивого запуска генератора. Это резко сужает диапазон измерений.

Автором были проверены микросхемы серий К155, К555, К531, К131, КР1533, 7400, 74LS00, 74НС00. Всем требованиям больше всего отвечала микросхема КР1533ЛАЗ. У нее размах напряжения на щупах был около 0,02 В. Но из-за этого она оказалась слишком чувствительной к помехам и наводкам от рук. Приходилось применять специальные меры, которые резко снижали диапазон измерений. ИМС К155ЛАЗ имела большой размах напряжения, что открывало р-n переходы даже кремниевых транзисторов и диодов. К555ЛАЗ открывала р-п переходы только германиевых транзисторов и диодов. Так что из этих серий лучше всего использовать микросхему 74НСОО. Она малочувствительна к помехам и наводкам от рук, не открывает р-п переходы даже германиевых транзисторов и диодов. К тому же, имеет малое потребление энергии.

Для счетчиков также лучше использовать микросхемы серии CD74HCT4040, т.к. они достаточно высокочастотны, имеют выходной ток, достаточный для хорошего свечения светодиодов, мало потребляют энергии. Напряжение питания должно быть стабилизированным. Оно выбрано 4,4 В. При выборе напряжения питания необходимо помнить, что его изменение приводит к изменению коэффициентов в формулах (1, 2, 4, 5), а следовательно, влияет на показания пробника. Изменяя Un, можно изменить диапазон измеряемых величин в ту или иную сторону. Изменение напряжения питания также влияет на чувствительность пробника к конденсаторам с потерями. Если его уменьшать, чувствительность падает, увеличивать - растет.

Светодиоды в пробнике - любые, красного свечения. Их все можно не устанавливать, а установить, например, через один. Правда, шаг шкалы при этом увеличится.

Настройка. Пробник размещен на плате размером 105x30 мм. Шкала пробника рассчитана по формулам 1 и 2 и соответствует действительности только при использовании микросхемы 74НСОО и напряжения питания 4,3 В. Микросхему DD2 желательно установить в панельку, т.к. если случайно коснуться пробником неразряженного конденсатора, находящегося под большим напряжением, микросхема может сгореть. Поэтому нужно обязательно разряжать конденсаторы перед измерением.

Щупы пробника должны иметь минимальную длину, т.к. на его работоспособность влияет даже очень маленькая индуктивность щупов. В авторском варианте длина одного щупа (вместе с кабелем) - 22 см, а другого - 10 см.

Автор: С.Володько, г.Гомель.

Смотрите другие статьи раздела Измерительная техника.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Оптимальная продолжительность сна 12.11.2025

Сон играет ключевую роль в поддержании здоровья, когнитивных функций и общего самочувствия. Несмотря на широко распространенный стереотип о восьмичасовом сне, последние исследования показывают, что оптимальная продолжительность сна для большинства здоровых взрослых ближе к семи часам. Эволюционный биолог из Гарварда, Дэниел Э. Либерман, утверждает, что традиционная норма восьми часов сна - это скорее культурное наследие индустриальной эпохи, чем биологическая необходимость. По его словам, полевые исследования, проведенные в сообществах, не использующих электричество, показывают, что средняя продолжительность сна составляет 6-7 часов, что значительно отличается от общепринятого стандарта. Современные эпидемиологические данные подтверждают этот взгляд. Исследования выявили так называемую "U-образную кривую" зависимости между продолжительностью сна и рисками для здоровья. Минимальные показатели заболеваемости и смертности наблюдаются именно у людей, спящих около семи часов в сутки. ...>>

Дефицит кислорода усиливает выброс закиси азота 12.11.2025

Парниковые газы играют ключевую роль в изменении климата, а закись азота (N2O) - один из наиболее опасных среди них. Этот газ не только втрое сильнее углекислого газа в удержании тепла, но и разрушает озоновый слой. Недавнее исследование американских ученых показало, что микробы в зонах с низким содержанием кислорода активно производят N2O, усиливая глобальные климатические риски. Команда из Университета Пенсильвании изучала прибрежные воды у Сан-Диего и провела наблюдения на глубинах от 40 до 120 метров в Восточной тропической северной части Тихого океана - одной из крупнейших зон дефицита кислорода. Исследователи сосредоточились на том, как морские микроорганизмы превращают нитраты в закись азота. В ходе работы выяснилось, что существует два пути образования N2O. Один путь начинается с нитрата, другой - с нитрита. На первый взгляд более короткий путь должен быть эффективнее, однако микробы, использующие нитрат, продуцируют больше газа, поскольку этот "сырьевой" источник более д ...>>

Омега-3 помогают молодым кораллам выживать 11.11.2025

Сохранение коралловых рифов становится все более актуальной задачей в условиях глобального изменения климата. Молодые кораллы особенно уязвимы на ранних стадиях развития, когда стрессовые условия и нехватка питательных веществ могут привести к высокой смертности. Недавнее исследование ученых из Технологического университета Сиднея показывает, что специальные пищевые добавки способны существенно повысить выживаемость личинок кораллов. В ходе работы исследователи разработали особый состав "детского питания" для коралловых личинок. В него вошли масла, богатые омега-3 жирными кислотами, а также важные стерины, необходимые для формирования клеточных мембран. Личинки, получавшие эти добавки, развивались быстрее, становились крепче и демонстрировали более высокую устойчивость к стрессовым факторам. Особое внимание ученые уделили липидам. Анализ показал, что личинки активно усваивают эти вещества, что напрямую влияет на их жизнеспособность. Стерины, содержащиеся в корме, повышают устойчи ...>>

Случайная новость из Архива

SSD-накопитель MSI SPATIUM M570 на PCIe 5.0 24.09.2022

Компания MSI представила свой новый твердотельный накопитель SPATIUM M570.

Главная особенность устройства - в простой невероятной скорости передачи данных благодаря работе с новейшим интерфейсом PCIe 5.0. За счет этого производителю удалось продемонстрировать более 12 000 МБ/с при чтении и более 10 000 МБ/с при записи данных. Это примерно в двадцать раз быстрее, чем у твердотельных накопителей, работающих по интерфейсу SATA3, так что разница в производительности системы будет достаточно заметна.

Ранее накопители, работающие на интерфейсе PCIe 4.0, предоставляли предельную скорость 7 000 МБ/сек, что тоже достаточно приличным показателем на фоне 500-600 МБ/сек у SATA3-накопителей. Но с постепенным переходом на PCIe 5.0 ситуация должна была кардинально измениться - именно это и произошло.

10 ГБ/сек при записи данных - невероятные характеристики для серийных SSD, при этом производитель также предоставляет модель SPATIUM M570 в достаточно приличных объемах памяти. Есть модели на 1, 2 и 4 ТВ - делать меньше памяти в таком дорогом продукте просто нет смысла плюс чем больше объем памяти, тем выше ресурс накопителя.

При этом вопрос перегрева, безусловно, никуда не делся - твердотельные накопители при работе на такой скорости передачи данных всегда нагреваются, особенно контроллер памяти, и в MSI решили сразу выпускать SPATIUM M570 с фирменным радиатором из алюминия (он окрашен в бронзовый цвет, но на самом деле это, конечно, не бронза).

Он имеет специальную форму с ребрами, что повышает общую площадь рассеяния тепла, плюс дизайнеры явно поработали, чтобы накопитель выглядел более чем привлекательно. Правда, скорее всего без радиатора накопитель не будут продавать - тем, у кого в материнской плате уже предусмотрен радиатор, придется выбирать.

Кроме того, хоть в MSI называют накопитель моделью для профессионалов, в пресс-релизе упоминаются и геймеры - естественно, с такой скоростью передачи видеоигры будут загружаться очень быстро, не будет проблем с текстурами в открытых мирах.

Другие интересные новости:

▪ Биометрическая татуировка следит за здоровьем

▪ Накопители SSD WRK от Angelbird

▪ Карусель с воздушными змеями

▪ Датчик движения Huawei S-TAG

▪ Цифровой сигнальный процессор C6713-300

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Детская научная лаборатория. Подборка статей

▪ статья Эффект последействия. Энциклопедия зрительных иллюзий

▪ статья Где и когда изобрели лотерею? Подробный ответ

▪ статья Заместитель директора по спорту. Должностная инструкция

▪ статья Антенна на 7 МГц с малой высотой подвеса. Энциклопедия радиоэлектроники и электротехники

▪ статья Воздушный змей. Физический эксперимент

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025