Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Измеритель LC. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Измерительная техника

Комментарии к статье Комментарии к статье

Хочу предложить измеритель LC с прямым отсчетом. Данный пробник, несмотря на свою простоту, обладает большими возможностями. Он позволяет измерять:

  • емкость конденсаторов (не выпаивая их из схемы);
  • индуктивность;
  • частоту сигналов (TTL-уровня);
  • тангенс угла и сопротивление потерь конденсаторов;
  • магнитную проницаемость сердечников;
  • добротность катушек индуктивности;
  • наличие короткозамкнутых витков в катушках. Схема пробника показана на рис. 1.

Измеритель LC
Рис. 1 (нажмите для увеличения)

На элементах DD1 и DD2 собран генератор, времязадающим элементом которого является измеряемая емкость или индуктивность. На элементах DD3 и DD4 собран делитель частоты с максимальным коэффициентом деления 16777211. Вся шкала пробника включает 25 значений, отличающихся друг от друга в 2 раза. При работе пробника визуально определяется, частота мигания какого светодиода ближе всего к 1 Гц. Показания напротив него и являются результатом измерения. Диод VD2 защищает прибор от переполюсовки питания.

Измерение емкости. Перед измерением конденсатор необходимо разрядить. Переключатель S1 поставить в разомкнутое положение (измерение емкости). В зависимости от необходимой точности, измерение можно провести тремя способами.

Технические характеристики:

  • Номинальное напряжение питания, В......4,3
  • Ток потребления, мА, не более......45
  • Диапазон измеряемой емкости, мкФ......80*10-6...25*103
  • Диапазон измеряемой индуктивности, Гн......2,5*10-6...40
  • Диапазон измеряемой частоты, Гц......1...16*106
  • Амплитуда напряжения на щупах при измерении емкостей, В......0,35
  • Амплитуда напряжения на щупах при измерении индуктивностей, В......10
  • Минимальная добротность индуктивностей......11

Способ 1. К щупам пробника подключается измеряемый конденсатор (его можно не выпаивать из схемы) и определяется, какой светодиод мигает с частотой около 1 Гц. На шкале против него читается значение емкости.

Способ 2. Для более точного измерения емкости нужно сделать все как в способе 1, только смотреть на светодиод, который мигает с частотой, большей чем 1 Гц, подсчитать количество миганий за 10 с, и вычислить частоту миганий, разделив подсчитанное количество на 10. Показание напротив этого светодиода разделить на полученную частоту. Результат и будет значением емкости конденсатора.

Способ 3. Для еще более точного определения емкости можно воспользоваться осциллографом или частотомером. Причем при использовании осциллографа можно оценить и качество проверяемого конденсатора (определить тангенс угла потерь). Подключив осциллограф или частотомер к щупам пробника, этими же щупами нужно коснуться проверяемого конденсатора. Если конденсатор имеет малые потери, то вид осциллограмы будет такой, как показано на рис. 2а. При больших потерях вид осциллограммы будет такой, как на рис. 2б. Определите величину периода Т и по формуле (1) подсчитайте емкость конденсатора:

С=T/40-5*10-9 (Ф). (1)

При ремонте радиоаппаратуры достаточно измерить емкость конденсатора по способу 1. Если полученное значение емкости меньше номинала, указанного на конденсаторе, в 2 и более число раз, такой конденсатор необходимо заменить.

Измеритель LC
Рис. 2

Измерение индуктивности. Индуктивность, так же как и емкость, можно измерить тремя способами.

Способ 1. Он аналогичен способу 1 для измерения емкостей. Только переключатель S1 нужно замкнуть.

Способ 2. Аналогичен способу 2 для измерения емкостей конденсаторов. Переключатель S1 поставить в положение для измерения индуктивности (замкнуть).

Способ 3. Аналогичен способу 3 для измерения емкостей. Индуктивность рассчитываем по формуле

L = 40*Т (Гн), (2)

а вид осциллограмм для катушек с малыми и большими потерями приведен на рис. За и 3б соответственно. Значения емкостей конденсаторов и индуктивностей катушек с потерями, определенные с помощью пробника, будут содержать погрешность - тем большую, чем больше эти потери.

Измеритель LC
Рис. 3

Измерение частоты сигнала. Пробник позволяет измерять частоту сигнала ТТЛ-уровня, при условии, что питание пробника гальванически развязано от питания проверяемой цепи. Переключатель S1 необходимо поставить в положение для измерения индуктивности. Одним щупом коснитесь общего провода, а другим - источника сигнала. Напротив светодиода, мигающего с частотой около 1 Гц, прочитайте показания частоты сигнала. Для более точного определения частоты можно воспользоваться способом 2.

Определение тангенса угла потерь конденсаторов. Тангенс угла потерь (tg d) точно можно определить с использованием осциллографа.

Способ 1. Для этого необходимо подключить к щупам пробника осциллограф и проверяемый конденсатор. Если осциллограмма выглядит как на рис. 2б, конденсатор имеет потери, величину которых можно вычислить. Конденсатор с потерями можно заменить эквивалентной схемой - последовательно соединенными конденсатором и сопротивлением потерь. Тогда тангенс угла потерь равен:

tg d = Rп/Xc = Rп/(2*pi*f*C), (3)

где Rп - сопротивление потерь (Ом); Хc - реактивное сопротивление конденсатора (Ом); f - частота, на которой работает конденсатор (Гц); C - емкость конденсатора (Ф).

Для данного пробника:

Rп = Uп/0,03 (Ом). (4)

Uп - измеряется по осциллографу, согласно рис. 2,б. При подключении к пробнику конденсатора, период Т, с учетом сопротивления потерь Rп, равен:

T = 3,33*(12-Rп)*(C + 5*10-9) (c) (5)

Если в данную формулу подставить Rп=0, то получается формула (1).

Способ 2. Измерьте емкость конденсатора с помощью пробника. Если пробник показал емкость в 2 или более число раз меньшую, чем номинал конденсатора (обозначенный на нем), данный конденсатор имеет большое сопротивление потерь Rп, а соответственно, и большой tg d. Тогда, согласно формуле (5), можно найти сопротивление потерь. Результаты расчета сведены в таблицу:

Измеритель LC

В верхней строке таблицы - кратность показаний пробника (во сколько раз емкость конденсатора меньше емкости, обозначенной на корпусе конденсатора. В нижней строке - соответствующее сопротивление потерь.

Определение добротности катушек индуктивности. Определите индуктивность катушки L1. Омметром (желательно цифровым) измерьте активное сопротивление катушки R. Подсчитайте реактивное сопротивление на заданной частоте.

XL= 2*pi*f*L (Ом), (6)

где XL - реактивное сопротивление катушки (Ом); f - рабочая частота (Гц); L - индуктивность катушки (Гн).

Добротность катушки индуктивности рассчитывается по формуле;

Q = XL/R. (7)

На данном пробнике показания заметны при Q>11.

Измеритель LC
рис. 4.

Определение магнитной проницаемости сердечника из феррита. Рассмотрим три вида сердечников (рис. 4). Рассчитаем величины, необходимые для определения магнитной проницаемости сердечников.

lМ=(D + d)*pi/2 (9)

SМ=(D - d)*h/2 (10)

lМ=2*(А+В-2*С) (11)

SМ=h*c (12)

lМ=2*(h+а+с)+3/2*а (13)

SМ = a*b (14)

Формулы (9) и (10) используются для кольца, (11) и (12) - для П-образного, а (13) и (14) - для Ш-образного сердечника. Все размеры в формулах (9)...(14) берутся в сантиметрах.

Намотайте не менее 15 витков провода (внавал) на сердечник и измерьте пробником полученную индуктивность, (для Ш-образного сердечника витки нужно мотать по размеру а). Эффективная магнитная проницаемость сердечника рассчитывается по формуле

uэ=(L*lМ)/(u0*n2*SМ) (15)

где L - индуктивность катушки, намотанной на данный сердечник (Гн);

lм - длина средней магнитной силовой линии (см);

SM - площадь сечения магнитопровода (см2);

u0 - магнитная проницаемость вакуума (u0=4*pi*10-9 Гн/см);

n - количество витков.

Выявление короткозамкнутых витков. Для определения наличия короткозамкнутых витков в катушках, намотанных на кольцеобразных, П-образных и Ш-образных сердечниках, необходимо сравнить индуктивность, измеренную пробником, и расчетную:

L=u0*uэ*n2*Sм/lм, (16)

где uэ - эффективная магнитная проницаемость для ферритовых материалов (указывается на них). Если она неизвестна, ее можно определить так, как описано выше.

Если индуктивность, определенная пробником, меньше в 2 и более раз, чем расчетная, то в катушке имеются короткозамкнутые витки.

Детали. Формулы (1, 2, 4, 5) верны только для пробника, собранного на микросхемах 74НС00. Если генератор пробника собрать на микросхемах других серий, в том числе и отечественных, в формулах появятся поправочные коэффициенты. При выборе микросхем нужно помнить, что:

  • размах напряжения на щупах пробника не должен превышать 0,3...0,4 В, чтобы не открывались р-n переходы не только кремниевых, но и германиевых транзисторов и диодов. Это позволяет проверять конденсаторы, не выпаивая их из плат;
  • ИМС должны быть достаточно быстродействующими (шире диапазон измерения);
  • при использовании некоторых серий необходимо подключить конденсатор С6 1000 пФ...0,01 мкФ (рис. 1) для устойчивого запуска генератора. Это резко сужает диапазон измерений.

Автором были проверены микросхемы серий К155, К555, К531, К131, КР1533, 7400, 74LS00, 74НС00. Всем требованиям больше всего отвечала микросхема КР1533ЛАЗ. У нее размах напряжения на щупах был около 0,02 В. Но из-за этого она оказалась слишком чувствительной к помехам и наводкам от рук. Приходилось применять специальные меры, которые резко снижали диапазон измерений. ИМС К155ЛАЗ имела большой размах напряжения, что открывало р-n переходы даже кремниевых транзисторов и диодов. К555ЛАЗ открывала р-п переходы только германиевых транзисторов и диодов. Так что из этих серий лучше всего использовать микросхему 74НСОО. Она малочувствительна к помехам и наводкам от рук, не открывает р-п переходы даже германиевых транзисторов и диодов. К тому же, имеет малое потребление энергии.

Для счетчиков также лучше использовать микросхемы серии CD74HCT4040, т.к. они достаточно высокочастотны, имеют выходной ток, достаточный для хорошего свечения светодиодов, мало потребляют энергии. Напряжение питания должно быть стабилизированным. Оно выбрано 4,4 В. При выборе напряжения питания необходимо помнить, что его изменение приводит к изменению коэффициентов в формулах (1, 2, 4, 5), а следовательно, влияет на показания пробника. Изменяя Un, можно изменить диапазон измеряемых величин в ту или иную сторону. Изменение напряжения питания также влияет на чувствительность пробника к конденсаторам с потерями. Если его уменьшать, чувствительность падает, увеличивать - растет.

Светодиоды в пробнике - любые, красного свечения. Их все можно не устанавливать, а установить, например, через один. Правда, шаг шкалы при этом увеличится.

Настройка. Пробник размещен на плате размером 105x30 мм. Шкала пробника рассчитана по формулам 1 и 2 и соответствует действительности только при использовании микросхемы 74НСОО и напряжения питания 4,3 В. Микросхему DD2 желательно установить в панельку, т.к. если случайно коснуться пробником неразряженного конденсатора, находящегося под большим напряжением, микросхема может сгореть. Поэтому нужно обязательно разряжать конденсаторы перед измерением.

Щупы пробника должны иметь минимальную длину, т.к. на его работоспособность влияет даже очень маленькая индуктивность щупов. В авторском варианте длина одного щупа (вместе с кабелем) - 22 см, а другого - 10 см.

Автор: С.Володько, г.Гомель.

Смотрите другие статьи раздела Измерительная техника.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Токсичность интернета преувеличена 07.01.2026

Социальные сети нередко воспринимаются как арена постоянной агрессии, оскорблений и распространения фейковой информации. Новое исследование Стэнфордского университета показывает, что реальность значительно отличается от популярного представления: интернет гораздо менее токсичен, чем многие пользователи считают. Ученые опросили более тысячи американцев, попросив их оценить долю пользователей соцсетей, которые ведут себя агрессивно или распространяют ненависть. Оказалось, что впечатления людей сильно преувеличивают масштабы проблемы. Например, респонденты считали, что почти половина пользователей Reddit хотя бы раз оставляла оскорбительные комментарии, тогда как фактические данные платформы показывают, что таких людей не более 3%. Аналогичная ситуация наблюдается с дезинформацией. Опрос показал, что большинство участников считали почти половину аудитории Facebook распространителями фейковых новостей, однако статистика говорит об обратном: фактическая доля таких пользователей состав ...>>

Процессоры Ryzen AI 400 07.01.2026

Современные вычисления все больше ориентируются на интеграцию искусственного интеллекта и высокую производительность в компактных устройствах, таких как ноутбуки и мини-ПК. Новая линейка процессоров AMD Ryzen AI 400 демонстрирует, как разработчики объединяют мощные центральные ядра, графику и нейросетевые ускорители в одном чипе, чтобы удовлетворять растущие потребности пользователей в играх, контенте и ИИ-приложениях. AMD представила процессоры серии Gorgon Point, которые включают до 12 ядер Zen 5 и до 24 потоков вычислений. Чипы поддерживают интегрированную графику RDNA 3.5, обеспечивают максимальную тактовую частоту до 5,2 ГГц и имеют энергопотребление от 15 Вт до 54 Вт. Особое внимание уделено NPU, способному обрабатывать до 60 триллионов операций в секунду (TOPS), что делает эти процессоры эффективными для задач с искусственным интеллектом. Конструкция Ryzen AI 400 сочетает ядра Zen 5 и Zen 5c, обеспечивая высокую гибкость и производительность. Несмотря на то, что архитектур ...>>

Женщины лучше распознают признаки болезни по лицу 06.01.2026

Способность распознавать, что кто-то нездоров, часто проявляется интуитивно: бледная кожа, опущенные веки, уставшее выражение лица могут сигнализировать о недомогании. Новое исследование международной группы ученых показало, что женщины в среднем точнее мужчин улавливают такие тонкие невербальные признаки болезни, что может иметь эволюционные и социальные объяснения. В отличие от предыдущих работ, где использовались отредактированные фотографии или имитация больных лиц, ученые решили проверить, насколько люди способны распознавать естественные признаки недомогания. Такой подход позволил оценить реальную чувствительность к изменениям в лицах, возникающим при болезни. В исследовании приняли участие 280 студентов, поровну мужчин и женщин. Участникам предложили оценить 24 фотографии, на которых изображены люди как в здоровом состоянии, так и во время болезни. Это дало возможность сравнить восприятие естественных признаков недомогания в реальных лицах. Для анализа состояния каждого ...>>

Случайная новость из Архива

Разрушение на заданных условиях 05.07.2000

Трудно ли вырубить из скальной породы блок в форме, к примеру, куба? Еще недавно это было очень трудно: во всяком случае, в карьерах. Сегодня ситуация изменилась: в Международном институте прикладной физики и высоких технологий (Москва) создан опытный образец мобильной электроразрядной установки УЭМ-200.

Принцип ее действия - электрогидравлический (электроразрядный) - состоит в том, что при прохождении мощного импульса тока в жидкостной среде образуется электрический пробой, а в нем - расширяющаяся газовая полость, которая создает гидравлический удар большой разрушительной силы. Сам этот метод был открыт ленинградским изобретателем Л. Юткиным еще в конце 40-х годов, но теперь, в эпоху обострения всех экологических проблем, привлекает к себе особое внимание.

Производимые с помощью гидравлического удара разрушения не сопровождаются ни ударными, ни сейсмическими волнами, ни выделением каких бы то ни было токсичных веществ. Именно потому проблемой применения электроразрядных технологий заняты сегодня ученые многих стран мира. Разработанный в Институте прикладной физики вариант такой технологии предназначен для разрушения крупных кусков скальных пород и бетонных блоков и может использоваться в горной и строительной промышленности.

Чтобы разрушить скальную породу или бетон, в них достаточно пробурить каналы (шпуры), заполнить водой и создать мощный импульсный электрический разряд. Осколки при этом не разлетаются. и, что особенно важно, форму поверхности раскола можно задать заранее. В том числе близкую к плоской, так что вырубить куб - задача сегодня почти реальная. Мобильная электроразрядная установка УЭМ-200 успешно прошла производственно-эксплуатационные испытания на ряде предприятий горной и строительной промышленности России.

Другие интересные новости:

▪ Почему светодиод не светит на полную мощность

▪ 3D-принтер Ricoh AM S5500P

▪ Несытые глаза искушают желудок

▪ Перовскит улучшает эффективность кремниевой солнечной батареи

▪ Рекорд на водороде

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Передача данных. Подборка статей

▪ статья Чайковский Петр Ильич. Знаменитые афоризмы

▪ статья Что такое инстинкт? Подробный ответ

▪ статья Мойка и чистка машин и оборудования. Типовая инструкция по охране труда

▪ статья Прибор для ориентировки антенн ДМВ. Энциклопедия радиоэлектроники и электротехники

▪ статья Микросхемы многофункциональные серии МС34118 для телефонных аппаратов. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2026