Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Приставка к мультиметру для измерения емкости конденсаторов

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Измерительная техника

Комментарии к статье Комментарии к статье

Работа приставки (рис. 1) основана на хорошо известном принципе - вначале конденсатор Сх заряжают до стабильного напряжения U, затем разряжают через измеритель тока. Если такие циклы зарядки-разрядки производить с частотой Е средний ток I через измеритель составит I = UFCX. Размерности в этой формуле удобно использовать следующие: микроамперы, вольты, герцы, микрофарады.

Приставка к мультиметру для измерения емкости конденсаторов

Описываемая приставка имеет пять пределов измерения - 2000 и 20000 пФ, 0,2, 2 и 20 мкФ. Измерителем тока служит мультиметр М-832, работающий в режиме милливольтметра постоянного тока с пределом 200 мВ, дополненный шунтами, установленными в приставке. Частоты перезарядки проверяемого конденсатора выбраны равными 5 кГц на первом пределе измерений, 500 Гц на следующих двух и 50 Гц на последних. При напряжении, до которого заряжается конденсатор, равном 3 В, ток через измеритель, соответствующий максимальной измеряемой емкости и рассчитанный по приведенной выше формуле, составляет 30 мкА на первых двух пределах, 300 мкА - на следующих двух и 3 мА - на последнем.

Приставку (рис. 2) подключают к трем гнездам мультиметра - к его входам "VΩmA" и "СОМ" (Общий), а также к гнезду "Е PNP" для подключения эмиттера транзистора структуры p-n-р при измерении параметров транзисторов.

Приставка к мультиметру для измерения емкости конденсаторов

Генератор, определяющий частоту перезарядки проверяемого конденсатора, собран на одном инвертирующем элементе - триггере Шмитта DD1.1, а переключатель, поочередно подключающий конденсатор Сх к плюсу источника питания и к измерителю тока - на КМОП ключах микросхемы DD2. Для уменьшения сопротивления открытых ключей оба канала микросхемы соединены параллельно. При низком уровне на входе 1 микросхемы ее выводы 13 и 3 соединяются с выходами ХО и Y0 соответственно, происходит зарядка проверяемого конденсатора Сх до напряжения 3 В. Когда же на этот вход поступает импульс положительной полярности, указанные выводы соединяются с выходами Х1 и Y1, конденсатор Сх разряжается через один из шунтов R6 - R9.

Для питания приставки использован внутренний стабилизатор мультиметра с напряжением около 3 В. Оно снято с его гнезд "Е PNP " и "СОМ". Однако ключи использованной в качестве DD2 микросхемы К561КП1 при напряжении питания 3 В хорошо пропускают сигналы только с "цифровыми" уровнями, т. е. близкими к напряжению питания и общего провода. При плавно меняющемся коммутируемом напряжении вблизи половины напряжения питания сопротивление транзисторов ключа быстро возрастает и конденсатор Сх не успевает перезаряжаться.

Для повышения напряжения питания в приставку введен преобразователь на микросхеме DA1 и конденсаторах С1 - С4, формирующий напряжение -3 В относительно общего провода. О работе такого преобразователя рассказано в статье автора "Преобразователи напряжения на переключаемых конденсаторах", опубликованной в "Радио", 2001, № 12, с. 44, 45. Выходное напряжение преобразователя суммируется с выходным напряжением стабилизатора мультиметра и используется для питания микросхем DD1 и DD2.

Резисторы R1 - R3, переключаемые секцией SA1.1 переключателя, совместно с конденсатором С5 определяют частоту генератора.

Выходная емкость ключей, монтажная емкость цепи, подключаемой параллельно проверяемому конденсатору, входная емкость мультиметра увеличивают показания измерителя примерно на 40 пФ. Для исключения такого сдвига показаний введены резисторы R4 и R5, подбором которых можно скомпенсировать ошибку показаний.

Приставка собрана на печатной плате (рис. 3) из односторенне фольгированного стеклотекстолита толщиной 1 мм.

Приставка к мультиметру для измерения емкости конденсаторов

Использованы резисторы МЛТ, С2-23, КИМ (R5), конденсаторы К50-16 (C3, С4), импортный аналог К50-35 (С1), КМ-6 (С2), К73-9 на напряжение 100 В (С5). Можно применить любые другие резисторы и конденсаторы, подходящие по размерам, но конденсатор С5 должен быть металлопленочным (серий К73) или бумажным, установка керамических конденсаторов недопустима из-за их низкой температурной стабильности. Переключатель SA1 - ПР2-5П2Н, ПГ2-2-6П2Н, ПГ2-9-6П2Н, П2Г-3-5П2Н, П2Г-3-6П2Н, ПГЗ-5П2Н или любой другой малогабаритный на необходимое число положений и направлений. Микросхемы серии К561 заменимы на аналогичные серии КР1561, а микросхему КР1168ЕП1 допустимо заменить ее импортным аналогом ICL7660 или ICL7660A.

Чтобы упростить подключение приставки к гнездам мультиметра, на плате закреплены гайками два разрезных штыря диаметром 4 мм от штекеров (цепи "VΩmA" и "СОМ") и впаян латунный штырек диаметром 0,8 мм (цепь "Е PNP").

Переключатель установлен на кронштейне, изготовленном из латуни толщиной 1 мм. Кронштейн закреплен на плате гайкой штыря "СОМ" и винтом М2,5 с гайкой, для чего на плате предусмотрено соответствующее отверстие.

Для подключения проверяемого конденсатора в плату впаяны два гнезда от разъема 2РМ под штыри диаметром 1 мм. В них можно вставить такие штыри с перпендикулярно подпаянными зажимами "крокодил", что позволит подключать измеряемые конденсаторы различного размера.

Плата накрыта кожухом, спаянным из фольгированного стеклотекстолита и закрепленного на плате по углам пайкой. Фольга кожуха соединена с общим проводом и выполняет роль экрана.

При изготовлении платы для работы приставки с мультиметром другого типа следует уточнить расположение контактных штырей.

С целью облегчения настройки для каждого подборного резистора на плате предусмотрено по два посадочных места. Относительно низкоомные резисторы шунтов R6 - R9 составляют из двух параллельно соединенных, а высокоомные R1 - R5 - из двух, соединенных последовательно.

Настраивают приставку в следующем порядке. Вначале на плату устанавливают все элементы, кроме резисторов и кронштейна с переключателем. В отверстия платы, отмеченные на рис. 3 надписями "к SA1.1" и "к SA1.2", и в предназначенные для установки левого (по рис. 3) вывода резистора R3 и нижнего R9 (общий провод) впаивают по отрезку жесткого медного провода длиной примерно 40 мм. Между выводом 5 DD2 и общим проводом (к соответствующей паре отрезков провода) подпаивают резистор номиналом 680 Ом и допуском не хуже ±10%.

В гнезда Х1, Х2 включают конденсатор емкостью 1... 1,5 мкФ, а между выводами 9 и 10 микросхемы DD1 (также к соответствующим отрезкам) подпаивают постоянный резистор сопротивлением 1,5 МОм последовательно с переменным 470 кОм. Для этого этапа настройки точность емкости конденсатора не имеет значения.

Устанавливают переключатель мультиметра в положение "200 mV" и вставляют приставку штырями в соответствующие гнезда мультиметра. Измеряют любым вольтметром напряжение на выводах 14 и 7 микросхемы DD1 относительно общего провода (СОМ) - оно должно составлять +3 и -3 В соответственно. Убеждаются в наличии генерации с частотой порядка 50 Гц с помощью осциллографа, подключенного параллельно Сх, или, при его отсутствии, подключением туда же любого пьезоизлучателя.

Показания мультиметра должны примерно соответствовать емкости конденсатора, но могут хаотически изменяться в некоторых пределах. Плавным поворотом вала переменного резистора добиваются максимальной стабильности показаний мультиметра (допустимы колебания показаний в пределах 0,5 % от измеряемого значения). Частота генератора при этом должна быть равна 50 Гц - желательно проверить ее осциллографом или частотомером. Пульсации входного напряжения с этой частотой (и кратными ей) хорошо подавляются аналого-цифровым преобразователем мультиметра, а при отклонении от нее проявляются в упомянутом выше хаотическом изменении показаний.

Измеряют суммарное сопротивление постоянного и переменного резисторов и подбирают постоянный такого же сопротивления. Если это сделать трудно, можно взять резистор несколько меньшего сопротивления, а последовательно с ним включить переменный. Повторить подстройку по отсутствию изменений показаний, и измеряют сопротивление только переменного резистора. Заменяют переменный на постоянный такого же сопротивления - здесь уже высокой точности не потребуется.

Установив на место Сх конденсатор с точно известной емкостью 1,5... 1,9 мкФ, добиваются соответствующих показаний на табло мультиметра подбором резистора R8. Для удобства можно взять резистор несколько большего сопротивления и параллельно ему подключить переменный на 22 кОм. Измерив сопротивление введенной части переменного резистора, подбирают соответствующий постоянный.

Далее, не меняя частоты генератора и используя конденсатор известной емкости около 10 мкФ, подбирают аналогично резистор R9.

Подпаяв подобранный резистор R8 и включив в гнезда эталонный конденсатор емкостью 0,15...0,19 мкФ, подбирают резистор R2. При этом частота генератора должна быть около 500 Гц.

Сохранив такие частоту генератора и эталонный конденсатор, подбирают резистор R7. Следует иметь в виду, что показания приставки будут завышены примерно на 40 пФ, поэтому, скажем, эталонному конденсатору 0,015 мкФ должны соответствовать показания 1504. Убирают сдвиг показаний подбором резистора R5.

Далее подбирают резистор R6 такого же сопротивления, что и R7. Вставив в гнезда эталонный конденсатор емкостью 1500... 1900 пФ, подбирают резистор R3, а для исключения сдвига показаний - резистор R4.

Если есть цифровой частотомер, можно вначале установить частоты генератора 50, 500, 5000 Гц подбором резисторов R1, R2 и R3 соответственно, а затем подобрать резисторы R6 - R9, используя эталонные конденсаторы указанной выше емкости.

Подобранные резисторы впаивают в плату, устанавливают переключатель на кронштейне и соединяют его выводы с платой.

При тщательно проведенном подборе резисторов точность измерений на первых четырех пределах будет не хуже 2%, на пределе 20 мкФ линейность сохраняется до 10 мкФ, а при емкости 20 мкФ показания окажутся заниженными примерно на 8%.

В случае отсутствия микросхемы КР1168ЕП1 или ICL7660 цепь -3 В приставки целесообразно питать от батареи мультиметра через стабилизатор на напряжение -6 В, в качестве которого можно использовать микросхему КР1168ЕН6 или 79L06 с любыми префиксами и суффиксами (рис. 4). Для этого на корпусе мультиметра cледует установить малогабаритное гнездо, соединив его с минусовым выводом батареи. Вывод "Вход" микросхемы DA2 необходимо снабдить гибким проводником со штекером, который включают в дополнительное гнездо мультиметра.

Приставка к мультиметру для измерения емкости конденсаторов

Приставку можно использовать как генератор импульсов с частотами 50, 500 и 5000 Гц и амплитудой 3 В, снимая их с выводов, предназначенных для подключения проверяемого конденсатора. При этом следует помнить, что выходное сопротивление такого генератора не меньше сопротивления включенного секцией SA1.2 резистора R6 - R9. Если импульсы снимать с выводов 4 и 7 DD1, их амплитуда будет составлять 6 В, а выходное сопротивление уменьшится.

Автор: С.Бирюков

Смотрите другие статьи раздела Измерительная техника.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Глазные капли, возвращающие молодость зрению 05.10.2025

С возрастом человеческий глаз постепенно теряет способность четко видеть на близком расстоянии - развивается пресбиопия, или возрастная дальнозоркость. Этот естественный процесс связан с утратой эластичности хрусталика и ослаблением цилиарной мышцы, отвечающей за фокусировку. Миллионы людей по всему миру сталкиваются с необходимостью носить очки для чтения или прибегают к хирургическим методам коррекции. Однако исследователи из Центра передовых исследований пресбиопии в Буэнос-Айресе представили решение, которое может стать удобной и неинвазивной альтернативой - специальные глазные капли, способные улучшать зрение на длительный срок. Разработку возглавила Джованна Беноцци, директор Центра. По ее словам, цель исследования состояла в том, чтобы предоставить пациентам с пресбиопией эффективный и безопасный способ коррекции зрения без хирургического вмешательства. Новые капли, созданные на основе пилокарпина и диклофенака, показали убедительные результаты: уже через час после первого пр ...>>

Цифровая рация Xiaomi Digital Walkie Talkie 05.10.2025

Компания Xiaomi представила современное устройство, объединившее классические принципы радиосвязи с возможностями цифровых технологий. Новинка под названием Xiaomi Digital Walkie Talkie демонстрирует, как привычные рации могут быть переосмыслены в духе времени. Устройство оснащено цветным дисплеем диагональю 1,57 дюйма, который отображает список контактов, параметры соединения и даже примерное местоположение собеседника. Такой подход превращает стандартную рацию в компактное средство связи, сочетающее функциональность смартфона и устойчивость профессиональной техники. Одним из ключевых преимуществ стала высокая автономность. Встроенный аккумулятор емкостью 2500 мА·ч обеспечивает до 100 часов работы в режиме ожидания и около 14 часов непрерывных разговоров, что особенно важно в экспедициях, на дальних маршрутах или в зонах, где подзарядка невозможна. Согласно данным портала unionrayo.com, такое время работы выгодно отличает устройство от большинства аналогов. По дальности дейст ...>>

Открыт обращаемый драйвер старения 04.10.2025

Недавняя работа ученых из Сямэньского университета в Китае показала, что в гипоталамусе, главном регуляторе внутренних функций организма, кроется один из ключей к продлению молодости. Команда под руководством Лиге Ленга обнаружила, что снижение уровня белка менина в гипоталамусе связано с ускорением процессов старения. Менин, как выяснилось, играет важную роль в предотвращении воспаления и поддержании нормальной работы нейронов. Когда его уровень снижается, в мозге возрастает активность воспалительных сигналов, что запускает цепную реакцию возрастных изменений во всем организме - от ослабления когнитивных функций до потери плотности костей и истончения кожи. Чтобы понять, как именно менин влияет на старение, ученые вывели генномодифицированных мышей, у которых этот белок можно было выборочно отключить. Даже у молодых животных такое вмешательство быстро привело к ухудшению памяти, снижению прочности костей и эластичности кожи, а также к укорочению жизни. Эти результаты убедительно ...>>

Случайная новость из Архива

Фотоны вместо электронов для революционных процессоров 18.01.2021

Современные вычислительные возможности классических процессорных архитектур себя исчерпали, уверены в IBM. Более того, они стали препятствием на пути развития систем машинного обучения и искусственного интеллекта. Прорыв видится в области развития кремниевой фотоники и вычислений в памяти, когда данные обрабатываются там, где они хранятся. И сегодня в IBM доказали, что они нащупали путь к электронике будущего, в которой вместо электронов по цепям полетят фотоны.

Специалисты IBM совместно с учеными из нескольких стран разработали и реализовали оптическую вычислительную систему для ускорения работы нейронных сетей. В частности, в компании создали "фотонное тензорное ядро", которое способно выполнять так называемую операцию свертки - математическую операцию над двумя функциями, которая выводит третью функцию - за один временной шаг. Обычно это простое сложение или умножение, но для обработки одного фрагмента данных требуются миллиарды таких операций, поэтому низкие задержки и малое потребление - это жизненно необходимые требования к таким системам.

Выполнение операций над данными в памяти - это дополнительная возможность сэкономить как на потреблении, так и на задержках, поскольку данные не нужно перегонять в процессор и обратно. В разработке IBM данные хранились и обрабатывались в ячейках памяти на основе памяти с фазовым переходом.

Следующий шаг к ускорению обработки данных - это мультиплексирование с разделением по длине волны (WDM). Проще говоря, на блок памяти данные поступали в виде света с разной длиной волны. Подобный подход позволяет как расширить канал передачи данных (частотное расширение), так и проводить операции над фотонным потоком данных параллельно. Там, где электроны текли в цепи последовательно, фотонные цепи допускают параллельное течение данных и одновременную обработку каждого из потоков. Это колоссальное ускорение обработки данных!

В качестве эксперимента была создана матрица 9 х 4 с максимум четырьмя входными векторами на временной шаг, каждый из которых передавался в виде светового излучения со своей длиной волны. Для операций MAC (умножение-накопление) матрица показала производительность 2 TOPS/с на скорости модуляции 14 ГГц. В IBM рассчитывают, что предложенная схемотехника поможет достичь производительности фотонных схем с вычислениями в памяти значений на уровне PetaMAC/с на мм2 (тысячи триллионов операций MAC), что на три порядка выше современных значений на уровне 1 TOPS/мм2 для текущей электроники.

Другие интересные новости:

▪ Созданмагнит, не содержащий редкоземельных металлов

▪ Механическая муха

▪ Смартфон-хамелеон

▪ 32-Гбит ReRAM-чип

▪ Драйвер светодиода MAX16831

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Светодиоды. Подборка статей

▪ статья Дать дуба. Крылатое выражение

▪ статья Как в Древнем Риме забывали о злодеяниях преступников? Подробный ответ

▪ статья Споры о нарушении правил охраны труда

▪ статья Самодельная ветросиловая установка. Уход за ветродвигателем. Энциклопедия радиоэлектроники и электротехники

▪ статья Допустимое повышение напряжения промышленной частоты оборудования при оперативных переключениях и в аварийных работах. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025