Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Универсальный пробник с питанием от ионистра. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Измерительная техника

Комментарии к статье Комментарии к статье

Гальванические элементы или аккумуляторы, обычно используемые для автономного питания измерительных приборов, имеют альтернативу в виде ионистора - конденсатора, обладающего очень высокой емкостью при малых габаритах. Автор умело воспользовался этим в новой конструкции пробника.

Когда пробником пользуются не часто, то срок годности элементов питания истекает раньше, чем вновь потребуется прибор. Такая ситуация не возникнет, если для питания использовать конденсаторы с двойным электрическим слоем - ионисторы [1,2]. Достаточно одной-двух минут для того, чтобы зарядить такой конденсатор, - и пробник готов к работе. А работать он может достаточно продолжительное время.

Пробник с таким накопителем энергии позволяет проводить "прозвонку" электрических цепей, проверку диодов и других приборов с p-n переходами. Встроенный генератор импульсов позволяет производить проверку НЧ и ВЧ цепей и узлов различной РЭА.

Схема пробника приведена на рис. 1. Его основа - генератор импульсных сигналов на транзисторах VT2, VT3, подключаемый к акустическому излучателю или подстроечному резистору R2. Полевой транзистор VT1 работает в устройстве зарядки ионистора С4, а VT4 управляет работой генератора.

Универсальный пробник с питанием от ионистра

Пробник работает следующим образом. Установку основных режимов производят переключателем SA1. В режиме "прозвонки" (проверки сопротивления цепи), когда переключатель SA2 находится в положении 4 ("Пробник"), контролируемая цепь с помощью штырей Х1 и Х2 подключается к истоку транзистора VT4 и общему проводу. Если сопротивление этой цепи более 1 кОм, ток через полевой транзистор меньше порогового уровня и поэтому транзистор VT3 остается закрытым и генератор не работает. Когда же сопротивление меньше этой величины, то VT3 открывается и звуковой сигнал генератора свидетельствует о том, что сопротивление цепи менее 1 кОм.

В устанавливаемом переключателем SA1 режиме проверки p-n переходов штырь Х1 через резистор R10 соединен с базой транзистора VT6. Если p-n переход исправен, то в случае подключения его анодом к Х1 и катодом к Х2 через него протекает прямой ток; транзисторы VT4-VT6 открыты и генератор работает. При обратной полярности включения перехода через него протекает очень малый обратный ток, VT6 закрыт, звукового сигнала нет.

Генератор вырабатывает импульсы постоянно, когда переключатель SA2 установлен в положение "Генер.". Его сигнал с движка резистора R2 через конденсатор C3 поступает на Х1 без ограничения спектра (в режиме "ШП") или через конденсатор С2 (в режиме "ВЧ"). Генератор вырабатывает короткие импульсы длительностью около 30 мкс и периодом следования 1...1,5 мс, имеющие широкий спектр частот, что позволяет использовать его для проверки каскадов НЧ и ВЧ. Амплитуду сигнала можно регулировать подстроечным резистором R2.

Режим зарядки ионистора С4 обеспечивают элементы VD1, VD2, HL1, VT1. После установки переключателя SA1 в положение "Зарядка" и SA2 в положение "Пробник" на штыри Х1, Х2 подают постоянное (плюсом на Х1) или переменное напряжение 5...20 В. Диод VD2 служит для защиты от неправильного подключения источника постоянного напряжения, а также выпрямления переменного. VT1 выполняет функцию стабилизатора тока, а HL1 - индикатора зарядки.

Как происходит зарядка? После подачи напряжения на штыри Х1, Х2 ток величиной около 10 мА, стабилизированный транзистором VT1, протекает через диод VD1 и ионистор. По мере зарядки напряжение на нем растет, и когда оно достигнет примерно 1,5 В, часть тока начнет протекать через резистор R1 и светодиод HL1. Подбором резистора R1 на цепи R1HL1 устанавливают напряжение около 3,2 В, чтобы ионистор заряжался до напряжения 2,5 В. Продолжительность этого процесса всего 1...2 мин. Специального выключателя питания нет, так как при переключении SA2 в положение "Пробник" и разомкнутых Х1 и Х2 протекают только обратные токи транзисторов и ток саморазряда С4.

О конструкции пробника. Большинство деталей размещают с двух сторон печатной платы из двухстороннего фольгированного стеклотекстолита, ее эскиз приведен на рис. 2.

Универсальный пробник с питанием от ионистра

Конденсаторы С2 и C3 установлены на выводах SA1. Переключатели, светодиод и акустический излучатель закреплены на стенках корпуса пробника, в качестве которого может быть использован алюминиевый цилиндр от фломастера или маркера с внешним диаметром около 22 мм (рис. 3). Печатную плату вставляют в него с небольшим усилием.

Универсальный пробник с питанием от ионистра

В пробнике можно применить такие детали: транзистор VT1 - КП302А, КП303Е или КП307А с начальным током стока 10...15 мА, VT4 - КП303А, КП303Б с начальным током стока около 1 мА. Транзисторы VT2, VT5 - серий КТ315, КТ3102, VT3, VT6 - КТ361, КТ3107 с любым буквенным индексом и h21Э не менее 50. Диоды VD1, VD2 - КД103А, КД104А, светодиод может быть любой из серий АЛ307, АЛ341. Подстроечные резисторы - СП3-19а, постоянные - МЛТ, С2-33, Р1-12. Ионистор С4 - К58-9а или К58-3; конденсатор С1 - с малым током утечки К52, К53; С2, C3 - КМ, К10-17. Переключатель SA1 - движковый на пять положений, например, от сетевых адаптеров, SA2 - любой малогабаритный на два положения и два направления.

Излучатель ВА1 - капсюль от малогабаритных головных телефонов с сопротивлением не менее 100 Ом. Динамический излучатель допустимо заменить на пьезоэлектрический, например, ЗП-1, ЗП-3 и аналогичные, при этом экономичность пробника повысится, но габариты придется увеличить. В этом случае параллельно излучателю ВА1 устанавливают резистор сопротивлением 3...5 кОм.

В авторском варианте пробника полного заряда ионистора хватало на 25 мин непрерывной работы генератора, поэтому в режиме "прозвонки" или проверки p-n переходов, когда генератор включают кратковременно, его заряда вполне хватит на рабочий день. В режиме генератора экономичность можно повысить, если в качестве SA2 применить кнопку с самовозвратом. В этом случае на нее кратковременно нажимают после подключения Х1 к исследуемой цепи.

Налаживание прибора сводится к подстройке резистором R5 порога срабатывания генератора таким, чтобы при напряжении питания 1,5... 2,5 В он работал устойчиво при подключении к Х1 и Х2 сопротивления менее одного килоома, а при большем сопротивлении генерация не возникала. Частоту колебаний генератора можно изменить подбором конденсатора С5. В режиме проверки диодов, возможно, придется подобрать резистор R9 для получения устойчивой работы пробника при пониженном напряжении (около 1,5 В).

Чтобы при зарядке ионистора напряжение на нем не превышало 2,5 В, сопротивление резистора R1 подбирают, временно заменив его подстроечным сопротивлением 150 Ом. Установив R1 в положение минимального сопротивления, подключают Х1, Х2 к источнику питания с напряжением 8...10 В. Через две-три минуты после подачи зарядного тока контролируют напряжение на ионисторе и постепенно, в течение нескольких минут, увеличивают сопротивление резистора до тех пор, пока напряжение на ионисторе не достигнет 2,5 В. После этого подстроечный резистор заменяют на постоянный того же сопротивления. Для того чтобы не производить такой подбор, резистор R1 можно заменить на два последовательно включенных маломощных кремниевых диода, например КД103А. При напряжении питания 1,5 В и менее частота генератора заметно понижается, что свидетельствует о необходимости подзарядки ионистора.

Если отсутствует ионистор, его заменит гальванический элемент, например, литиевый с напряжением 3 В, при этом все детали, обеспечивавшие зарядку ионистора, исключают. В случае его замены малогабаритными аккумуляторами, например Д-0,03 (2 шт.), схему не изменяют, но при этом придется подобрать транзистор VT1 с начальным током 3...5 мА и зарядку аккумуляторов проводить в течение 12...15 ч.

Если нужно, чтобы в режиме генератора звуковой сигнал звучал постоянно, переключатель SA2.1 исключают, коллектор транзистора VT2 соединяют с нижними (по схеме) выводами R2 и ВА1, а сопротивление R2 увеличивают до 1 кОм.

Литература

  1. Гайлиш Е. и др. Ионисторы КИ1-1. - Радио,1978, № 5, с. 59.
  2. Астахов А. и др. Конденсаторы с двойным электрическим слоем. - Радио, 1997, № 3, 4, с. 57. 31

Автор: И.Нечаев, г.Курск

Смотрите другие статьи раздела Измерительная техника.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Кислотность океана разрушает зубы акул 03.10.2025

Мировые океаны выполняют важнейшую функцию - они поглощают около трети углекислого газа, выбрасываемого в атмосферу. Это помогает замедлять темпы глобального потепления, но имеет и обратную сторону. Растворяясь в воде, CO2 образует угольную кислоту, которая повышает концентрацию водородных ионов и приводит к снижению pH. Вода становится более кислой, а последствия этого процесса уже заметны для морских экосистем. Средний показатель кислотности океана сейчас равен примерно 8,1, тогда как еще недавно за условную норму брали значение 8,2. По прогнозам, к 2300 году уровень может упасть до 7,3 - это сделает океан почти в десять раз кислее нынешнего состояния. Для обитателей морей подобные изменения означают не просто сдвиг химического равновесия, а реальную угрозу физиологическим процессам, начиная от формирования раковин у моллюсков и заканчивая охотничьим поведением акул. Чтобы выяснить, как именно кислотная среда отражается на зубах акул, группа немецких исследователей провела эксп ...>>

Почтовый космический корабль Arc 03.10.2025

Космические технологии становятся частью инфраструктуры, способной повлиять на логистику, медицину и даже военную сферу. Идея использовать орбиту как глобальный склад для срочных поставок звучала еще недавно как научная фантастика, но стартап Inversion пытается превратить ее в практическое решение. Компания Inversion появилась в начале 2021 года благодаря Джастину Фиаскетти и Остину Бриггсу, которые на тот момент были студентами Бостонского университета. Их замысел состоял в том, чтобы сделать возможной доставку грузов не только через спутниковые сети данных, но и в буквальном смысле - физических предметов. В основе лежит простая мысль: если космос обеспечивает доступ к любой точке Земли, то и грузы должны перемещаться тем же маршрутом. Уже за три года работы команда из 25 специалистов успела построить демонстрационный аппарат "Ray". Его запуск состоялся в рамках миссии SpaceX Transporter-12. Устройство весом 90 килограммов проверяло ключевые технологии Inversion, включая двухком ...>>

Лазерное обогащение урана 02.10.2025

Ядерная энергия остается одним из ключевых источников стабильного электричества, особенно для стран с растущими потребностями в энергоснабжении. Однако обеспечение бесперебойных поставок топлива для атомных станций требует современных технологий обогащения урана, которые одновременно эффективны и безопасны. Американская компания Global Laser Enrichment (GLE) делает значительный шаг в этом направлении, завершив масштабное тестирование лазерной технологии обогащения урана. Демонстрационная программа была проведена на объекте в Уилмингтоне, Северная Каролина. Тестирование технологии SILEX (Separation of Isotopes by Laser EXcitation), разработанной австралийской Silex Systems, стартовало в мае 2025 года и продлится до конца года. В ходе экспериментов компания планирует получить сотни фунтов низкообогащенного урана (LEU), который может быть использован в качестве топлива для атомных электростанций. GLE была создана в 2007 году для коммерциализации лазерных методов обогащения урана в С ...>>

Случайная новость из Архива

Телефон на пешеходном переходе - вне закона 25.10.2017

Пока в одних странах еще не научились бороться с водителями, разговаривающими по мобильному телефону во время движения, в других вскоре за это же начнут штрафовать пешеходов.

Конечно, запрещать пользоваться мобильным аппаратом во время ходьбы никто не собирается. Вместо этого власти города Гонолулу (Гавайи) уже приняли закон, согласно которому запрещается использовать электронные устройства при пересечении автомобильных дорог.

Если быть точным, запрещается "просмотр", то есть разговаривать по телефону все-таки можно, а вот переходить дорогу, уставившись в дисплей, уже нельзя. Штраф за такое нарушение составит 35 долларов. Закон вступит в силу уже завтра.

В некоторых европейских городах уже появились специальные наземные светофоры для тех, кто не может на несколько секунд оторваться от экрана. Но страх получить штраф, возможно, будет более действенным стимулом. Можно предположить, что в ближайшие годы подобные инициативы обретут более широкое распространение.

Согласно статистике, за прошлый год в США количество летальных ДТП с пешеходами выросло на 9% и достигло почти 6000 случаев, что является максимумом с 1990 года.

Другие интересные новости:

▪ Искусственных поросята - доноры органов для людей

▪ Футбол с электроникой

▪ Электромобиль как резервный источник питания в доме

▪ Механическая клавиатура K70 RGB Pro

▪ Лазер охлаждает молекулы

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Электрические счетчики. Подборка статей

▪ статья Перл Бак. Знаменитые афоризмы

▪ статья Какой знаменитый слоган был создан на основе последних слов осужденного на расстрел? Подробный ответ

▪ статья Секретарь (диспетчер) учебной части. Должностная инструкция

▪ статья Что же зря-то шумите на до мною, березы? Энциклопедия радиоэлектроники и электротехники

▪ статья Встреча четырех неразлучных друзей. Секрет фокуса

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025