Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Универсальный пробник с питанием от ионистра. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Измерительная техника

Комментарии к статье Комментарии к статье

Гальванические элементы или аккумуляторы, обычно используемые для автономного питания измерительных приборов, имеют альтернативу в виде ионистора - конденсатора, обладающего очень высокой емкостью при малых габаритах. Автор умело воспользовался этим в новой конструкции пробника.

Когда пробником пользуются не часто, то срок годности элементов питания истекает раньше, чем вновь потребуется прибор. Такая ситуация не возникнет, если для питания использовать конденсаторы с двойным электрическим слоем - ионисторы [1,2]. Достаточно одной-двух минут для того, чтобы зарядить такой конденсатор, - и пробник готов к работе. А работать он может достаточно продолжительное время.

Пробник с таким накопителем энергии позволяет проводить "прозвонку" электрических цепей, проверку диодов и других приборов с p-n переходами. Встроенный генератор импульсов позволяет производить проверку НЧ и ВЧ цепей и узлов различной РЭА.

Схема пробника приведена на рис. 1. Его основа - генератор импульсных сигналов на транзисторах VT2, VT3, подключаемый к акустическому излучателю или подстроечному резистору R2. Полевой транзистор VT1 работает в устройстве зарядки ионистора С4, а VT4 управляет работой генератора.

Универсальный пробник с питанием от ионистра

Пробник работает следующим образом. Установку основных режимов производят переключателем SA1. В режиме "прозвонки" (проверки сопротивления цепи), когда переключатель SA2 находится в положении 4 ("Пробник"), контролируемая цепь с помощью штырей Х1 и Х2 подключается к истоку транзистора VT4 и общему проводу. Если сопротивление этой цепи более 1 кОм, ток через полевой транзистор меньше порогового уровня и поэтому транзистор VT3 остается закрытым и генератор не работает. Когда же сопротивление меньше этой величины, то VT3 открывается и звуковой сигнал генератора свидетельствует о том, что сопротивление цепи менее 1 кОм.

В устанавливаемом переключателем SA1 режиме проверки p-n переходов штырь Х1 через резистор R10 соединен с базой транзистора VT6. Если p-n переход исправен, то в случае подключения его анодом к Х1 и катодом к Х2 через него протекает прямой ток; транзисторы VT4-VT6 открыты и генератор работает. При обратной полярности включения перехода через него протекает очень малый обратный ток, VT6 закрыт, звукового сигнала нет.

Генератор вырабатывает импульсы постоянно, когда переключатель SA2 установлен в положение "Генер.". Его сигнал с движка резистора R2 через конденсатор C3 поступает на Х1 без ограничения спектра (в режиме "ШП") или через конденсатор С2 (в режиме "ВЧ"). Генератор вырабатывает короткие импульсы длительностью около 30 мкс и периодом следования 1...1,5 мс, имеющие широкий спектр частот, что позволяет использовать его для проверки каскадов НЧ и ВЧ. Амплитуду сигнала можно регулировать подстроечным резистором R2.

Режим зарядки ионистора С4 обеспечивают элементы VD1, VD2, HL1, VT1. После установки переключателя SA1 в положение "Зарядка" и SA2 в положение "Пробник" на штыри Х1, Х2 подают постоянное (плюсом на Х1) или переменное напряжение 5...20 В. Диод VD2 служит для защиты от неправильного подключения источника постоянного напряжения, а также выпрямления переменного. VT1 выполняет функцию стабилизатора тока, а HL1 - индикатора зарядки.

Как происходит зарядка? После подачи напряжения на штыри Х1, Х2 ток величиной около 10 мА, стабилизированный транзистором VT1, протекает через диод VD1 и ионистор. По мере зарядки напряжение на нем растет, и когда оно достигнет примерно 1,5 В, часть тока начнет протекать через резистор R1 и светодиод HL1. Подбором резистора R1 на цепи R1HL1 устанавливают напряжение около 3,2 В, чтобы ионистор заряжался до напряжения 2,5 В. Продолжительность этого процесса всего 1...2 мин. Специального выключателя питания нет, так как при переключении SA2 в положение "Пробник" и разомкнутых Х1 и Х2 протекают только обратные токи транзисторов и ток саморазряда С4.

О конструкции пробника. Большинство деталей размещают с двух сторон печатной платы из двухстороннего фольгированного стеклотекстолита, ее эскиз приведен на рис. 2.

Универсальный пробник с питанием от ионистра

Конденсаторы С2 и C3 установлены на выводах SA1. Переключатели, светодиод и акустический излучатель закреплены на стенках корпуса пробника, в качестве которого может быть использован алюминиевый цилиндр от фломастера или маркера с внешним диаметром около 22 мм (рис. 3). Печатную плату вставляют в него с небольшим усилием.

Универсальный пробник с питанием от ионистра

В пробнике можно применить такие детали: транзистор VT1 - КП302А, КП303Е или КП307А с начальным током стока 10...15 мА, VT4 - КП303А, КП303Б с начальным током стока около 1 мА. Транзисторы VT2, VT5 - серий КТ315, КТ3102, VT3, VT6 - КТ361, КТ3107 с любым буквенным индексом и h21Э не менее 50. Диоды VD1, VD2 - КД103А, КД104А, светодиод может быть любой из серий АЛ307, АЛ341. Подстроечные резисторы - СП3-19а, постоянные - МЛТ, С2-33, Р1-12. Ионистор С4 - К58-9а или К58-3; конденсатор С1 - с малым током утечки К52, К53; С2, C3 - КМ, К10-17. Переключатель SA1 - движковый на пять положений, например, от сетевых адаптеров, SA2 - любой малогабаритный на два положения и два направления.

Излучатель ВА1 - капсюль от малогабаритных головных телефонов с сопротивлением не менее 100 Ом. Динамический излучатель допустимо заменить на пьезоэлектрический, например, ЗП-1, ЗП-3 и аналогичные, при этом экономичность пробника повысится, но габариты придется увеличить. В этом случае параллельно излучателю ВА1 устанавливают резистор сопротивлением 3...5 кОм.

В авторском варианте пробника полного заряда ионистора хватало на 25 мин непрерывной работы генератора, поэтому в режиме "прозвонки" или проверки p-n переходов, когда генератор включают кратковременно, его заряда вполне хватит на рабочий день. В режиме генератора экономичность можно повысить, если в качестве SA2 применить кнопку с самовозвратом. В этом случае на нее кратковременно нажимают после подключения Х1 к исследуемой цепи.

Налаживание прибора сводится к подстройке резистором R5 порога срабатывания генератора таким, чтобы при напряжении питания 1,5... 2,5 В он работал устойчиво при подключении к Х1 и Х2 сопротивления менее одного килоома, а при большем сопротивлении генерация не возникала. Частоту колебаний генератора можно изменить подбором конденсатора С5. В режиме проверки диодов, возможно, придется подобрать резистор R9 для получения устойчивой работы пробника при пониженном напряжении (около 1,5 В).

Чтобы при зарядке ионистора напряжение на нем не превышало 2,5 В, сопротивление резистора R1 подбирают, временно заменив его подстроечным сопротивлением 150 Ом. Установив R1 в положение минимального сопротивления, подключают Х1, Х2 к источнику питания с напряжением 8...10 В. Через две-три минуты после подачи зарядного тока контролируют напряжение на ионисторе и постепенно, в течение нескольких минут, увеличивают сопротивление резистора до тех пор, пока напряжение на ионисторе не достигнет 2,5 В. После этого подстроечный резистор заменяют на постоянный того же сопротивления. Для того чтобы не производить такой подбор, резистор R1 можно заменить на два последовательно включенных маломощных кремниевых диода, например КД103А. При напряжении питания 1,5 В и менее частота генератора заметно понижается, что свидетельствует о необходимости подзарядки ионистора.

Если отсутствует ионистор, его заменит гальванический элемент, например, литиевый с напряжением 3 В, при этом все детали, обеспечивавшие зарядку ионистора, исключают. В случае его замены малогабаритными аккумуляторами, например Д-0,03 (2 шт.), схему не изменяют, но при этом придется подобрать транзистор VT1 с начальным током 3...5 мА и зарядку аккумуляторов проводить в течение 12...15 ч.

Если нужно, чтобы в режиме генератора звуковой сигнал звучал постоянно, переключатель SA2.1 исключают, коллектор транзистора VT2 соединяют с нижними (по схеме) выводами R2 и ВА1, а сопротивление R2 увеличивают до 1 кОм.

Литература

  1. Гайлиш Е. и др. Ионисторы КИ1-1. - Радио,1978, № 5, с. 59.
  2. Астахов А. и др. Конденсаторы с двойным электрическим слоем. - Радио, 1997, № 3, 4, с. 57. 31

Автор: И.Нечаев, г.Курск

Смотрите другие статьи раздела Измерительная техника.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Хорошо управляемые луга могут компенсировать выбросы от скота 15.02.2026

Животноводство, особенно разведение крупного рогатого скота, часто обвиняют в значительном вкладе в глобальное потепление из-за мощного парникового газа - метана, который выделяется при пищеварении у жвачных животных. Это вызывает острые политические споры и призывы к сокращению потребления мяса. Однако ученые напоминают, что полная картина климатического воздействия отрасли не ограничивается только выбросами от животных: огромную роль играет окружающая экосистема - пастбища, почва и растительность, которые способны активно поглощать углекислый газ из атмосферы. Исследователи из Университета Небраски-Линкольна решили глубже изучить этот баланс. Группа под руководством профессора Галена Эриксона сосредоточилась на том, как правильно организованные пастбища накапливают углерод в растениях и грунте благодаря естественным процессам, стимулируемым выпасом скота. Ученые подчеркивают, что при достаточном уровне осадков и грамотном управлении такие луга превращаются в мощные природные погло ...>>

NASA тестирует инновационную технологию крыла 15.02.2026

Коммерческая авиация ежегодно расходует колоссальные объемы керосина, что сказывается не только на бюджете авиакомпаний, но и на состоянии окружающей среды. В 2024 году глобальные затраты на авиационное топливо достигли 291 миллиарда долларов, и эта сумма продолжает расти. Чтобы справиться с этими вызовами, NASA активно работает над технологиями, способными заметно повысить аэродинамическую эффективность самолетов. Одним из самых перспективных направлений стало создание специальной конструкции крыла, которая максимизирует естественный ламинарный поток воздуха и минимизирует сопротивление. В январе 2026 года специалисты NASA Armstrong Flight Research Center успешно провели важный этап наземных испытаний концепции Crossflow Attenuated Natural Laminar Flow (CATNLF). Для эксперимента под фюзеляж исследовательского самолета F-15B закрепили вертикально ориентированную масштабную модель высотой около 0,9 м (3 фута), напоминающую узкий киль. Такая компоновка позволила подвергнуть прототип р ...>>

Забота о внуках очень полезна для здоровья мозга 14.02.2026

Общение между поколениями приносит радость всей семье, но мало кто задумывается, насколько активно бабушки и дедушки, заботящиеся о внуках, поддерживают свою умственную форму. Регулярное взаимодействие с детьми стимулирует мозг пожилых людей, помогая сохранять память, скорость мышления и общую когнитивную активность. Новые научные данные подтверждают, что такая добровольная помощь не только важна для общества, но и может замедлять возрастные изменения в мозге. Исследователи из Тилбургского университета в Нидерландах провели анализ, чтобы понять, приносит ли уход за внуками реальную пользу здоровью пожилых людей. Ведущий автор работы Флавия Черечес отметила, что многие бабушки и дедушки регулярно присматривают за детьми, и оставался открытым вопрос, насколько это положительно сказывается на их собственном благополучии, особенно в плане когнитивных функций. Ученые поставили цель выяснить, способен ли регулярный уход за внуками замедлить снижение памяти и других умственных способ ...>>

Случайная новость из Архива

Дрон гоняет голубей 26.01.2022

Группа специалистов из Швейцарии разработала автоматизированную систему, которая самостоятельно отпугивает птиц при помощи дронов, не причиняя им никакого вреда.

Ученые из Швейцарии создали специальную систему, которая отпугивает голубей и прогоняет их с крыш. Птицы слишком часто гадят не только на крыши, но и на памятники культуры.

Эксперты установили на крыше камеру, которая настроена на распознавание голубей. Она также рассчитывает их координаты. Затем в эту зону отправляется дрон, который издает шум отпугивает птиц.

Орнитологи уже проанализировали поведение голубей. Как оказалось, они куда меньше времени проводят на крышах, если система, описанная выше, работает в стандартном режиме.

Ученые заявили, что помет голубей не только портит вид зданий и памятников культуры, но и может переносить большое количество болезней и паразитов.

Другие интересные новости:

▪ Искусственная кожа, чувствующая боль

▪ 512-ГБ SSD от Samsung в формате BGA-микросхемы

▪ Космический аромат от NASA

▪ Гибкая керамика

▪ Инновационные источники питания TDK-Lambda DRF

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Параметры, аналоги, маркировка радиодеталей. Подборка статей

▪ статья Северная Минерва. Крылатое выражение

▪ статья Какой кинофильм был первым? Подробный ответ

▪ статья Татарский жмых. Легенды, выращивание, способы применения

▪ статья Электронный Барабан. Энциклопедия радиоэлектроники и электротехники

▪ статья Исчезающие узлы. Секрет фокуса

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2026