Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Цифровой измеритель параметров транзисторов. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Измерительная техника

Комментарии к статье Комментарии к статье

В журнале "Радио", 1998, №8, с. 62-65 описана микросхема КР572ПВ5 и варианты ее использования, в том числе и нестандартные. Здесь мы приводим краткое описание цифрового измерителя параметров транзисторов как пример использования этой микросхемы в дифференциальном включении.

Прибор позволяет измерять коэффициент передачи тока базы h21Э в трех диапазонах с верхними пределами 200, 2000, 20 000 при токе коллектора, устанавливаемом дискретно величиной 0,1; 0,3; 1 и т. д. до 300 мА. Кроме того, возможно измерение обратного тока коллектора также на трех диапазонах с верхними пределами 20,2 и 0,2 мкА, разрешающая способность на низшем - 0,1 нА. Определение h21Э производится при напряжении коллектор-база около 1,5 В, а обратного тока коллекторного перехода - при 5 В.

Принцип измерения h21Э проиллюстрирован на рис. 1. Проверяемый транзистор VTX включен по схеме с общей базой. Его эмиттерный ток определяется относительно большим сопротивлением токозадающего резистора, установленного в цепь эмиттера (один из резисторов R15 - R23), и напряжением источника питания. В цепь эмиттера включен также токоизмерительный резистор (R11-R14). В цепи базы в диагонали диодного моста VD1 установлен резистор, падение напряжения на котором пропорционально току базы (R1-R6).

Цифровой измеритель параметров транзисторов

Отношение напряжения на резисторе в цепи эмиттера к напряжению на резисторе в цепи базы пропорционально коэффициенту передачи тока в схеме с общим коллектором, он на единицу больше аналогичного коэффициента в схеме с общим эмиттером. Это отношение измеряется АЦП на микросхеме КР572ПВ5. Токоизмерительные резисторы подобраны такого сопротивления, что падение на эмиттерном резисторе составляет около 50 или 150 мВ, на базовом - 25...1500 мВ в зависимости от коэффициента передачи тока базы h21Э и диапазона. Диодный мост необходим для того, чтобы можно было проверять транзисторы различной структуры без переключения входов UОБР АЦП. Кроме того, падение напряжения на диодах моста обеспечивает напряжение коллектор"база на указанном уровне 1,5 В. Напряжение на входе UВХ АЦП может менять знак, поэтому в эмиттерной цепи диодный мост не требуется.

При измерении обратного тока коллекторного перехода IКо между коллектором и эмиттером проверяемого транзистора VTX прикладывается напряжение 5 В с делителя R7R15 (рис. 2). Падение напряжения на токоизмерительных резисторах R8-R10 пропорционально измеряемому току. На вход UОБР АЦП в этом режиме подается напряжение 100 мВ. Роль делителя состоит не только в снижении напряжения, подаваемого на транзистор, до 5 В и ограничении тока в случае установки неисправного транзистора, но и в приведении синфазного напряжения на входах UВХ АЦП к половине напряжения питания. Естественно, что в этом режиме можно проверять и обратные токи диодов.

Цифровой измеритель параметров транзисторов

Схема цепей коммутации измерителя приведена на рис. 3. Переключатель SA1 служит для выбора тока эмиттера проверяемого транзистора и включения режима измерения обратного тока коллектора IКо, переключатель SA2 определяет диапазоны измерений h21Э и IКо, положение SA3 определяется структурой транзистора. Конденсаторы С1 и С2 необходимы для устранения генерации, иногда возникающей при проверке высокочастотных транзисторов, C3 устраняет сетевые наводки при измерении обратного тока коллекторного перехода. Цепочки R24С4, R25С5, R26С6, R27С7 служат для защиты входов микросхемы КР572ПВ5 от статического электричества.

Цифровой измеритель параметров транзисторов
(нажмите для увеличения)

Измерительная часть устройства собрана по схеме рис. 3 [1] (цепь R7C6 исключена), номиналы элементов и делитель для получения напряжения 100 мВ заимствованы из [2]. Частота тактового генератора - 40 кГц (R46 в [2] - 110 кОм). Общий провод устройства - точка соединения вывода 32 микросхемы КР572ПВ5 с конденсаторами С9 и С28 в [2].

Резисторы R1-R6, R8-R14 желательно подобрать с точностью не хуже 2 %, в крайнем случае можно использовать резисторы с допуском 5 % без подбора. В описываемой конструкции в основном использовались резисторы типа С2-29В мощностью 0,125 Вт. Резистор R14 составлен из двух параллельно соединенных С2-29В 1 Ом 0,125 Вт. Резисторы R7, R15-R23 использованы типа МЛТ с допуском 5 %, R23 составлен из двух последовательно соединенных сопротивлением 12 и 15 Ом мощностью 2 Вт. Диодный мост КЦ407А может быть заменен на четыре кремниевых диода на рабочий ток не менее 100 мА. Переключатель SA1 типа ПГ7-35-16П5Н, SA2 - ПГ2-11-6П6Н, SA3 - ПГ2-13-4П3Н. На принципиальной схеме дана нумерация контактов, приведенная на переключателях.

При настройке прибора желательно установить частоту тактового генератора АЦП, равную 40 кГц, подбором резистора R45 [1]. Для этого осциллографом, синхронизированным от сети, контролируют частоту импульсов на выходе F микросхемы КР572ПВ5 (вывод 21). Изображение импульсов на экране должно быть практически неподвижным, при этом их частота составляет 50 Гц. Необходимо также откалибровать измеритель тока. Проще всего установить на движке подстроечного резистора R26 [1] относительно общего провода напряжение 100 мВ, контролируя его точным вольтметром с входным сопротивлением не менее 1 МОм.

Литература

  1. Бирюков С. Применение АЦП КР572ПВ5. - Радио, 1998, №8, с. 62-65.
  2. Бирюков С. Цифровой мультиметр. - Радио, 1996, №5, с. 32-34; №6, с. 32-34; 1997, №1, с. 52, №3, с. 54.

Автор: С.Бирюков

Смотрите другие статьи раздела Измерительная техника.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Кислотность океана разрушает зубы акул 03.10.2025

Мировые океаны выполняют важнейшую функцию - они поглощают около трети углекислого газа, выбрасываемого в атмосферу. Это помогает замедлять темпы глобального потепления, но имеет и обратную сторону. Растворяясь в воде, CO2 образует угольную кислоту, которая повышает концентрацию водородных ионов и приводит к снижению pH. Вода становится более кислой, а последствия этого процесса уже заметны для морских экосистем. Средний показатель кислотности океана сейчас равен примерно 8,1, тогда как еще недавно за условную норму брали значение 8,2. По прогнозам, к 2300 году уровень может упасть до 7,3 - это сделает океан почти в десять раз кислее нынешнего состояния. Для обитателей морей подобные изменения означают не просто сдвиг химического равновесия, а реальную угрозу физиологическим процессам, начиная от формирования раковин у моллюсков и заканчивая охотничьим поведением акул. Чтобы выяснить, как именно кислотная среда отражается на зубах акул, группа немецких исследователей провела эксп ...>>

Почтовый космический корабль Arc 03.10.2025

Космические технологии становятся частью инфраструктуры, способной повлиять на логистику, медицину и даже военную сферу. Идея использовать орбиту как глобальный склад для срочных поставок звучала еще недавно как научная фантастика, но стартап Inversion пытается превратить ее в практическое решение. Компания Inversion появилась в начале 2021 года благодаря Джастину Фиаскетти и Остину Бриггсу, которые на тот момент были студентами Бостонского университета. Их замысел состоял в том, чтобы сделать возможной доставку грузов не только через спутниковые сети данных, но и в буквальном смысле - физических предметов. В основе лежит простая мысль: если космос обеспечивает доступ к любой точке Земли, то и грузы должны перемещаться тем же маршрутом. Уже за три года работы команда из 25 специалистов успела построить демонстрационный аппарат "Ray". Его запуск состоялся в рамках миссии SpaceX Transporter-12. Устройство весом 90 килограммов проверяло ключевые технологии Inversion, включая двухком ...>>

Лазерное обогащение урана 02.10.2025

Ядерная энергия остается одним из ключевых источников стабильного электричества, особенно для стран с растущими потребностями в энергоснабжении. Однако обеспечение бесперебойных поставок топлива для атомных станций требует современных технологий обогащения урана, которые одновременно эффективны и безопасны. Американская компания Global Laser Enrichment (GLE) делает значительный шаг в этом направлении, завершив масштабное тестирование лазерной технологии обогащения урана. Демонстрационная программа была проведена на объекте в Уилмингтоне, Северная Каролина. Тестирование технологии SILEX (Separation of Isotopes by Laser EXcitation), разработанной австралийской Silex Systems, стартовало в мае 2025 года и продлится до конца года. В ходе экспериментов компания планирует получить сотни фунтов низкообогащенного урана (LEU), который может быть использован в качестве топлива для атомных электростанций. GLE была создана в 2007 году для коммерциализации лазерных методов обогащения урана в С ...>>

Случайная новость из Архива

Космический зонд JUICE 14.04.2023

Европейское космическое агентство осуществило запуск ракеты Ariane 5 с космодрома Куру, Французская Гвиана. Тем самым был дан старт миссии по исследованию спутников Юпитера.

Ракета вывела в космос 6-тонный космический аппарат Jupiter Ice Moons Explorer (JUICE). Это крупнейшая миссия ЕКА по изучению дальнего космоса. Космический корабль был построен компанией Airbus Defense & Space и обошелся в 1,5 млрд. евро.

Идея миссии JUICE возникла после того, как зонды NASA Galileo и Cassini обнаружили, что некоторые спутники Юпитера и Сатурна покрыты льдом. Вероятно, они также содержат большие подповерхностные океаны, в которых может существовать микробная жизнь.

"Следующим логическим шагом было возвращение на Юпитер с улучшенным оборудованием для детального изучения этих океанов", - сказал Николя Альтобелли, планетолог из Европейского космического агентства, участвовавший в разработке миссии JUICE. "И имея это в виду, мы хотели посмотреть, являются ли они возможными местами обитания для жизни".

Космический корабль JUICE достаточно массивен, и ему потребуется несколько пролетов возле планет, чтобы накопить энергию для достижения системы Юпитера. После своего запуска JUICE трижды пролетит мимо Земли, а также Венеры, прежде чем выйти на орбиту вокруг Юпитера. Это случится только в 2031 году. Затем, с 2031 по 2034 год, он совершит почти три десятка облетов Ганимеда, Европы и Каллисто, подробно исследуя их ледяные поверхности.

JUICE приблизится к некоторым космическим объектам на расстояние 200 км, что позволит лучше их рассмотреть. Корабль оборудован оптической камерой высокого разрешения, спектрометром, магнитометром и другими исследовательскими приборами. Среди научных целей миссии также называют понимание формирования спутников Юпитера, их развития и изменения, которые привели к отличиям друг от друга.

В конце 2034 года, после совершения многих оборотов вокруг Юпитера, JUICE должен выйти на орбиту вокруг Ганимеда, где он останется еще на год. Это будет сложный маневр по выходу на орбиту спутника другой планеты. Как отмечает Николя Альтобелли, Ганимед - это очень интересный спутник с собственным магнитным полем и, вероятно, внутренним океаном. В ЕКА надеются "провести самый подробный анализ внутренней части луны".

Другие интересные новости:

▪ Рукописные SMS PenPhone

▪ Магнитные частицы загрязняют мозг

▪ Пленочный носитель информации

▪ Холодильник Sharp JH-DT55B

▪ Лазерный теннис

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Дом, приусадебное хозяйство, хобби. Подборка статей

▪ статья Паровоз. История изобретения и производства

▪ Каковы были пути объединения Германии в XIX в.

▪ статья Повар. Типовая инструкция по охране труда

▪ статья Дверной звонок из музыкальной открытки. Энциклопедия радиоэлектроники и электротехники

▪ статья Устойчивая монета. Секрет фокуса

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025