Menu English Ukrainian Russian Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Приставка для измерения частотных характеристик. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Измерительная техника

Комментарии к статье Комментарии к статье

В последнее время в радиолюбительской практике широко стали применяться визуальные методы проведения контроля характеристик, основанные на использовании панорамных индикаторов. С их помощью удается намного оперативнее производить регулировку таких весьма сложных радиотехнических устройств, как фильтры, усилители, радиоприемники, телевизоры, антенны. Однако приобрести такой прибор промышленного изготовления не всегда возможно, да и стоит он недешево.

Между тем, без особых затрат можно сделать аналогичный по функциональному назначению прибор в виде приставки к осциллографу. Такая приставка должна содержать генератор качающейся частоты (ГКЧ), генератор напряжения для развертки осциллографа и выносную детекторную головку. Схема такой приставки показана на рис. 1.

Приставка для измерения частотных характеристик
(нажмите для увеличения)

При разработке приставки ставилась цель создать простую, малогабаритную и удобную для повторения конструкцию. Правда, из-за смей простоты она, конечно, не лишена некоторых недостатков, но ее и следует рассматривать лишь как базовую конструкцию. По мере добавления других узлов можно будет расширить функциональные возможности и сервисные удобства прибора.

Предлагаемая приставка предназначена для настройки различных электронных устройств в диапазоне частот 48...230 МГц, т.е. в телевизионном диапазоне МВ. Однако эта конструкция позволяет изменять диапазон ее рабочих частот, и тогда она сможет работать в диапазоне ДМВ (300...900 МГц), первой промежуточной частоты спутникового телевидения (800...1950 МГц) или на радиолюбительских KB диапазонах.

Основное достоинство такой приставки заключается в том, что весь диапазон частот перекрывается с помощью одного ГКЧ (это удобно при настройке широкополосных устройств, например антенных усилителей, селекторов каналов телевизоров и т.п.), предусмотрена возможность установки верхней и нижней частот диапазона качания независимо друг от друга двумя ручками управления. Это позволяет быстро устанавливать необходимый участок рабочего диапазона. К недостаткам же устройства следует отнести нелинейную зависимость напряжения развертки и изменение его амплитуды при изменении диапазона рабочих частот.

Приставка состоит из ГКЧ, собранного на транзисторах VT2 VT3, буферного усилителя на транзисторе VT4.Ha элементах DA1, DA2, DA4,001 собран генератор треугольного напряжения, на микросхеме DA5 и транзисторе VT1-стабилизатор тока для питания ГКЧ, а на микросхеме DA3-усилитель напряжения для развертки осциллографа.

Генератор ВЧ собран по схеме мультивибратора с индуктивной нагрузкой. Такое схемотехническое решение позволило обеспечить перекрытие всего диапазона (коэффициент перекрытия по частоте примерно 5) без переключении частотозадающих элементов. Достигнуто это изменением тока через транзисторы, при этом изменяются параметры их проводимости и диффузионные емкости, что позволяет варьировать частоту такого генератора в широких пределах. Так, при изменении тока от 50 до 1,5 мА частота изменяется от 48 до 230 МГц. Но для повышения стабильности частоты и возможности управления генератором ВЧ, его следует питать от стабилизатора тока.

Управляющее напряжение для стабилизатора тока формируется на конденсаторе С3, усиливается микросхемой DA5 и ее выходной сигнал управляет током, протекающим через транзистор VT1 (и транзисторы генератора ВЧ). Элементы DA1, DA2, DM и DD1 обеспечивают периодическую перезарядку конденсатора. Цикл перезарядки зависит от положений

движков резисторов R2 и R4. Поступающее на резисторы напряжение стабилизировано параметрическим стабилизатором R1 VD1. Усилители постоянного тока DA1 и DA2 выполняют роль компараторов напряжения - в качестве образцового использовано напряжение падения на резисторе R14, а переключающие напряжения определяются положениями резисторов R2 и R4.

В исходном состоянии конденсатор С3 разряжен, поэтому на резисторе R14 и на выводах компараторов 3 DA1 и 2 DA2 будет напряжение, близкое к нулю. В этом случае на входе R триггера DD1 будет высокий логический уровень, а на выходе S - низкий, соответственно на прямом выходе триггера будет низкий уровень, а на инверсном - высокий. В таком состоянии на выходе микросхемы DA4 будет напряжение 10...11 В и начнется зарядка конденсатора C3 через резистор R11.

Увеличение напряжения на конденсаторе приводит к увеличению тока через генератор ВЧ и к уменьшению генерируемой частоты. Когда падение напряжения на резисторе R14 сравняется с напряжением на движке резистора R4, на выходе компаратора DA2 появится низкий логический уровень, но состояние триггера не изменится и процесс зарядки конденсатора продолжится.

При увеличении напряжения на резисторе R14 до уровня напряжения на движке резистора R2, на выходе компаратора DA1 появится высокий логический уровень, состояние триггера изменится на противоположное, поэтому на выходе микросхемы DM будет напряжение -10...-11 В и начнется разрядка конденсатора С3. При этом компаратор DA1 переключится в состояние с низким логическим уровнем на выходе, но триггер не перебросится и конденсатор С3 продолжит разрядку.

При разрядке конденсатора до напряжения срабатывания компаратора DA2, на его выходе появится высокий логический уровень, триггер переключится, на выходе микросхемы DA4 будет напряжение 10...11 В - снова начнется зарядка конденсатора C3.

Таким образом, изменил напряжение на движках резисторов R2 и R4, можно изменять напряжения на входах компараторов, между которыми происходит перезарядка конденсатора C3, т.е. диапазон изменения тока, протекающего через генератор ВЧ, а значит, и диапазон изменения его частоты. Так как эти напряжения можно устанавливать независимо друг от друге, то обеспечивается независимая установка верхней и нижней частот диапазона качания частоты генератора.

На конденсаторе C3 формируется треугольное напряжение, а не пилообразное, как это обычно бывает в подобных устройствах. Поэтому частота ГКЧ перестраивается вверх и вниз с одинаковой скоростью. Это позволило устранить необходимое в таких случаях устройство гашения обратного хода луча, что, конечно же, упрощает конструкцию.

Следует отметить, что линейность треугольного напряжения будет невысокой, но вполне удовлетворительной. Если линейность имеет важное значение, то в цепи зарядки конденсатора вместо резистора R11 следует включить стабилизатор тока, выполненный по схеме, приведенной на рис. 2.

Приставка для измерения частотных характеристик

Буферный усилитель на транзисторе VT4 обеспечивает развязку между генератором ВЧ и нагрузкой, а также формирует необходимый уровень выходного напряжения: на выходе XS1 он составляет 100 мВ, а на выходе XS2 -10 мВ.

Для синхронизации развертки осциллографа использовано падение напряжения на резисторе R14, оно пропорционально изменению частоты (поскольку оба являются функцией тока через транзисторы генератора), но с обратной зависимостью - большее напряжение на резисторе соответствует меньшему значению частоты. Поэтому его подают на инвертирующий усилитель (микросхема DA3) с регулируемым коэффициентом передачи. На его выходе формируется напряжение для синхронизации развертки осциллографа, имеющее прямую зависимость между напряжением и частотой. Амплитуда этого напряжения устанавливается резистором R10.

Все радиоэлементы приставки размещены на печатной плате, показанной на рис. 3. Она изготовлена из двустороннего фольгирован-ного текстолита. Свободная от элементов сторона оставлена металлизированной и соединена с другой стороной фольгой по периметру платы. Эта сторона одновременно является и передней панелью устройства, а детали закрываются корпусом, лучше металлическим.

Приставка для измерения частотных характеристик

В устройстве можно применить элементы следующих типов: ОУ - К140УД6 или К140УД7 (с буквенными индексами А и Б), цифровая микросхема - К561ТМ2, 564ТВ1 или другие микросхемы серий К561, 564, содержащих RS-триггер. Кроме того, триггер можно собрать и на основе логических элементов микросхем К561ЛА7, К561ЛЕ5 и др.

Транзистор VT1 - КТ603 (с буквенными индексами А - Г); КТ608 (А. Б) КТ630 (А, Б), КТ815 (А - Г), КТ817 (А - Г); VT2 и VT3 -КТ3123А, КТ3123В, а при уменьшении диапазона перестройки и КТ363Б, при использовании транзисторов КТ3101А.КТ3124А. КТ3132А схему генератора надо изменить в соответствии со схемой на рис. 4; VT4 - КТ368 (А,Б), КТ399А. КТ3101А, КТ3124А или им аналогичные.

Стабилитрон - КС147А, КС156А. Резисторы R2, R4, R10 - СП, СПО, СП4-1, остальные - МЛТ. Конденсаторы С1.C3 - К50-6, К53-1, К52-1.С7-КД, КГ, остальные -КМ, КЛС, КД.

Гнезда XS1, XS2 любые высокочастотные, например телевизионные. Катушки L1, L2 бескаркасные, намотаны на оправке диаметром 2 мм и содержат по 5 витков провода диаметром 0,5 мм, длина намотки 15 мм.

Приставка для измерения частотных характеристик

Схема выносной детекторной головки приведена на рис. 5. В ней можно применить высокочастотные детекторные диоды - КД419А, ГД507А или аналогичные им. Все элементы размешены в корпусе от фломастера и соединения между ними должны иметь минимальную длину. С осциллографом она соединяется экранированным проводом.

Налаживание устройства начинают с генератора ВЧ. Для этого временно нижний по схеме вывод резистора R11 отсоединяют от микросхемы DA4 и подключают его к движку резистора R2. К гнезду XS1 подключают частотомер, затем, вращая резистор R2, измеряют диапазон изменения частоты генератора- коэффициент его перекрытия по частоте должен быть не менее 5. Если это так, то устанавливают границы диапазона за счет одновременного изменения числа витков катушек или сжимая и разжимая витки. Если коэффициент перекрытия оказался меньше, то можно попытаться увеличить его за счет уменьшения номинала резисторов R3 и R5 на 20...30 %.

После этого все соединения восстанавливают и убеждаются в работоспособности генератора треугольного напряжения. Для этого контролируют напряжение на резисторе R14 при вращении резисторов R2 и R4.

Затем подключают приставку к осциллографу и резистором R10 устанавливают развертку по горизонтали на весь экран.

После этого к гнезду XS1 подключают нагрузку (резистор 75 или 50 Ом) и детекторную головку, а ее выход - на "Вход Y" осциллографа. При этом на экране должна появиться кривая, отражающая частотную зависимость выходного напряжения. Подбором номиналов элементов С7, С10, R13 и мест подключения последних к L2 добиваются напряжения около 100 мВ при ее неравномерности не более 30 %. В конструкции автора конденсатор С7 был подключен к первому, а резистор R13 - к третьему витку катушки L2, считая от нижнего по схеме вывода.

В заключение проводят градуировку шкал резисторов R2 и R4. Для этого на вход подключенной к разъему XS1 детекторной головки через резистор сопротивлением 200...300 Ом подают сигнал с эталонного генератора. С частотой, например, 100 МГц и изменяют его амплитуду до получения аккуратной метки ив кривой. После этого ручкой "Fн" совмещают начало развертки с этой меткой и делают отметку на шкале. Затем ручкой "Fs" совмещают конец развертки с этой меткой и также делают отметку уже на шкале этого резистора. Аналогично градуируют шкалу для других частот.

Для питания приставки использован двуполярный стабилизированный источник питания, обеспечивающий ток по плюсовой шит до 100 мА и по минусовой - до 10 мА..

Автор:И. Нечаев, г. Курск; Публикация: Н. Большаков, rf.atnn.ru

Смотрите другие статьи раздела Измерительная техника.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Использование Apple Vision Pro во время операций 16.03.2024

Медицинская команда больницы Кромвеля в Лондоне впервые применила Apple Vision Pro в ходе двух операций на позвоночнике. Это событие подтверждает потенциал гарнитуры в качестве медицинского инструмента, изменяющего подход к хирургической практике. Хотя сами врачи не использовали Vision Pro, операционная медсестра работала с виртуальной реальностью, используя очки во время подготовки и выполнения процедур. Гарнитура позволила просматривать виртуальные экраны в операционной, выбирать инструменты и следить за ходом операции. Программное обеспечение, разработанное компанией eXeX, специализирующейся на создании приложений на основе искусственного интеллекта для хирургии, существенно улучшило процесс оказания медицинской помощи пациентам. Использование Apple Vision Pro открывает новые возможности для разработки приложений в сфере здравоохранения, таких как клиническое образование, планирование операций, обучение и медицинская визуализация. Внедрение Apple Vision Pro в медицинскую пр ...>>

Хранение углерода в Северное море 16.03.2024

Министр энергетики Норвегии Терье Осланд объявил о запуске проекта Longship, нацеленного на создание центрального хранилища углекислого газа в Северном море. Этот амбициозный проект оценивается в $2,6 млрд и направлен на применение технологии CCS (углеродного захвата и хранения) для смягчения воздействия климатических изменений. Норвегия уже имеет опыт в области CCS благодаря успешным проектам Sleipner и Snohvit, и сейчас стремится увеличить объем углерода, запечатываемого под морским дном. План Longship предусматривает создание мощности по захвату и хранению 1,5 млн. тонн углерода ежегодно в течение 25 лет. Несмотря на позитивные перспективы, существуют опасения по поводу долгосрочных последствий такого хранения. Однако сторонники проекта утверждают, что морское хранение углерода имеет ряд преимуществ, включая минимальное воздействие на окружающую среду. Проект Longship осуществляется при участии компаний Equinor, Shell и TotalEnergies через совместное предприятие Northern Li ...>>

Выращены мини-органы из амниотической жидкости человека 15.03.2024

Международная команда ученых под руководством профессора Фань Сюлиня из Университета Чжэцзян разработала уникальный способ выращивания мини-органов из клеток, обнаруженных в амниотической жидкости человека. Этот значительный прорыв в медицине может привести к улучшению диагностики и лечения врожденных заболеваний. Органоиды, представляющие собой трехмерные клеточные структуры, имитирующие органы в меньшем масштабе, были выращены из клеток легких, почек и тонкого кишечника, найденных в амниотической жидкости. Этот метод открывает новые возможности для изучения различных состояний плода и может стать ключом к ранней диагностике и лечению врожденных дефектов. Хотя пока не проводились попытки использования этого метода в лечении, ученые надеются, что их исследования в будущем помогут бороться с серьезными врожденными заболеваниями, которые затрагивают миллионы новорожденных ежегодно. Этот прорыв может изменить практику медицинских вмешательств, позволяя диагностировать и лечить врожд ...>>

Случайная новость из Архива

Реакция мозга на оскорбления и комплименты 20.07.2022

Слова играют большую роль в человеческих взаимодействиях. Они могут причинить серьезный дискомфорт и боль, поставить под угрозу репутацию и самолюбие. Однако мы до сих пор мало знаем о том, как именно мозг воспринимает обидные слова.

Ученые из Утрехтского и Лейденского университетов (Нидерланды) решили разобраться в этой связи между эмоциями и языком.

Авторы предположили, что словесные оскорбления запускают каскад быстро следующих друг за другом или перекрывающихся эффектов обработки информации, а повторение может по-разному влиять на разные части этого каскада. Например, некоторые из них способны быстро исчезать при повторении, а другие - оставаться выраженными в течение длительного времени.

В исследовании приняли участие 79 женщин. Во время эксперимента они читали серию повторяющих утверждений трех типов: оскорбления (например, "Линда ужасная"), комплименты ("Линда впечатляющая") и нейтральные, фактически правильные описательные утверждения ("Линда - голландка"). Чтобы проверить, зависело ли воздействие слов от того, кому они были адресованы, ученые использовали в одной половине утверждений имя участницы эксперимента, а в другой - незнакомое имя. В эксперименте не было реального взаимодействия между участницами и другим человеком, а самим добровольцам сказали, что заявления, которые они читали, сделали три разных мужчины. Активность мозга испытуемых во время эксперимента фиксировали с помощью электроэнцефалографии (ЭЭГ).

Оказалось, даже вне реального взаимодействия словесные оскорбления все равно задевали испытуемых. Причем эффект сохранялся и при повторении. Об этом свидетельствовал потенциал, связанный с событием (ERP), - измеренный по ЭЭГ отклик мозга на стимулы (высказывания). Один из этих сигналов, называющийся P2, был более выражен при восприятии негативной лексики и оставался устойчивым при ее повторении и не зависел от того, о ком было оскорбление. Значит, негативная оценочная лексика привлекает больше внимания нашего мозга.

Комплименты вызывали менее сильный эффект P2. Таким образом, мозг склонен уделять больше внимания неприятным высказываниям. Вероятно, это связано с тем, что даже написанные слова ассоциируются с ситуациями межличностного взаимодействия, некоторые из которых могут быть опасными либо неприятными и потребовать от нас ответных действий.

Другие интересные новости:

▪ Intel Optane DC - первая оперативная память с микросхемами 3D XPoint

▪ Ноутбуки Honor MagicBook X

▪ E-skin - дисплей на коже

▪ Новый USB-разъем не будет несовместим с нынешним

▪ 8-ядерный мобильный процессор от Samsung

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Шпионские штучки. Подборка статей

▪ статья Коктейль Молотова. Крылатое выражение

▪ статья Способны ли люди ощущать направленный на них взгляд? Подробный ответ

▪ статья Журавлина. Легенды, выращивание, способы применения

▪ статья Акустический пробник. Энциклопедия радиоэлектроники и электротехники

▪ статья Источники постоянного тока - своими руками. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





All languages of this page

Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2024