Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Индикатор напряженности поля. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Детекторы напряженности поля

Комментарии к статье Комментарии к статье

Для налаживания антенно-фидерных трактов любительских радиостанций необходим индикатор напряженности высокочастотного электрического поля. Предлагаемый в этой статье прибор отличается от обычно используемых высокой чувствительностью и широкой полосой рабочих частот.

Традиционно индикатор напряженности поля представляет собой антенну (чаще всего, в виде короткого штыря), амплитудный детектор (выпрямитель РЧ напряжений) и стрелочный измеритель (как правило, микроамперметр). Для повышения чувствительности индикатор делают активным, снабжая его усилителем РЧ или постоянного тока.

Индикатор напряженности поля. Схема индикатора напряженности поля
(нажмите для увеличения)

В предлагаемом индикаторе (рис. 1) отсутствует обычный амплитудный детектор, поскольку его функции выполняет микросхема К174ПС4- перемножитель сигналов, широко используемый радиолюбителями в смесителях радиоприемников, конвертерах и т. д.

Как же микросхема работает в нашем случае? Входной сигнал (как правило. синусоидальный или близкий к нему), принятый антенной WA1, поступает на два входа микросхемы - выводы 8 и 11 (два другие - выводы 7, 13 - соединяют по переменному току с общим проводом), и она осуществляет перемножение сигнала "сам на себя". Если Uвх=Usinwt, то на выходе микросхемы будет сигнал Uвых=KU2sin2wt, где U - амплитуда входного сигнала, w - его круговая частота, К - коэффициент передачи микросхемы. Это выражение можно преобразовать; Uвых=KU2sin2wt = KU2/2 - (KU2cos2wt)/2.

Таким образом, в выходном сигнале микросхемы присутствует постоянная составляющая и переменная составляющая удвоенной частоты, Постоянная составляющая пропорциональна квадрату входного напряжения, поэтому показания микроамперметра РА1, подключенного к выходу микросхемы, будут пропорциональны мощности сигнала, излучаемой антенной. Переменную составляющую легко подавить, установив конденсатор С7 достаточной емкости. Диоды VD1, VD2 служат для защиты входных цепей микросхемы от мощных сигналов.

Питается устройство от батареи напряжением 9 В ("Крона", "Корунд", "Ника") и потребляет ток примерно 1,5 мА, Работоспособность сохраняется при уменьшении напряжения питания до 6 В. Максимальный ток через микроамперметр РА1 ограничен резисторами R1, R2.

Индикатор напряженности поля

В устройстве можно применить практически любой малогабаритный стрелочный индикатор с током полного отклонения стрелки от 50 до 150 мкА, На частоте 28 МГц чувствительность устройства (минимальный регистрируемый сигнал) был 2...3 мВ, а зависимость показаний от входного напряжения имела квадратичный характер (рис. 2). Благодаря атому прибор более чувствителен к изменениям напряженности поля, что позволяет точнее настраивать антенно-фидерные тракты. Так, например, при изменении напряжения на входе устройства в 1,4 раза (3 дБ) показания индикатора увеличиваются вдвое.

Вместо указанной на схеме K174ПC4 допустимо применить микросхемы К174ПС1, К174ПС2. Кроме диодов КД510A, подойдут КД522Б, КД503Б, Конденсаторы - КЛС, КД, К10-17, КМ, резисторы - МЛТ, С2-33, Выключатель - любой малогабаритный, лучше движковый на два положения.

Индикатор напряженности поля

Большинство деталей размещают на печатной плате (рис. 3) из одностороннего фольгированного стеклотекстолита. Плату нужно разместить ближе к антенне внутри металлического корпуса подходящих габаритов. Рядом с платой можно укрепить источник питания. На передней стенке корпуса устанавливают микроамперметр и выключатель. Антенна - телескопическая от малогабаритные транзисторных приемников. Она должна полностью убираться в корпус. Изменяя длину выдвинутой части антенны, можно в определенных пределах регулировать чувствительность устройства к напряженности электромагнитного поля.

Налаживания устройства не требует, но если будет применена другая микросхема, то придется подобрать резисторы (они должны быть одинаковых номиналов), чтобы на выводах микросхемы было напряжение, примерно равное половине напряжения источника питания. При необходимости балансировку прибора (нулевые показания микроамперметра РА1 в отсутствие сигнала на входе устройства) можно произвести подбором резистора R1 или резистора R2.

По сравнению с пассивным индикатором данное устройство имеет значительно более высокую чувствительность, что позволяет настраивать антенны при меньшем уровне мощности, а также обнаруживать месторасположение подслушивающих устройств - "жучков". Частотная характеристика индикатора определяется параметрами примененной микросхемы. В авторском варианте его чувствительность на частоте 145 МГц уменьшалась втрое.

При желании индикатор можно сделать избирательным, установив на его входе перестраиваемый LC-контур.

Автор: Игорь Нечаев (UA3WIA); Публикация: cxem.net

Смотрите другие статьи раздела Детекторы напряженности поля.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Растения сигнализируют об опасности вулканической активности 17.06.2025

Извержения вулканов - одни из самых разрушительных природных явлений, и своевременное их предсказание является важной задачей для защиты жизни и имущества людей. Современные технологии позволяют отслеживать сейсмическую активность, тепловые аномалии и газовые выбросы, однако ученые из разных стран продолжают искать новые, более ранние признаки приближающейся опасности. Недавнее исследование команды под руководством вулканолога Николь Гвинн продемонстрировало необычный способ раннего обнаружения вулканической активности с помощью изменений в растительности вокруг вулкана Этна - одного из самых активных вулканов Европы. В ходе двухлетних наблюдений ученые выявили 16 случаев, когда увеличение содержания углекислого газа (CO2) в воздухе или почве совпадало с ростом показателя NDVI - нормализованного индекса растительности, отражающего интенсивность фотосинтеза и здоровье зеленых насаждений. Этот индекс широко используется для оценки густоты и жизнеспособности растительного покрова на сп ...>>

Магнит без использования полезных ископаемых 17.06.2025

Технологии все больше зависят от редких и дорогих материалов, добыча которых сопряжена с экологическими и геополитическими рисками. В связи с этим поиск альтернативных решений становится одной из важнейших задач науки и промышленности. Недавно американские ученые во главе с исследователем китайского происхождения Цзянь-Пин Ванг разработали магнит, изготовленный исключительно из железа и азота, который не содержит традиционных редкоземельных элементов. Это открытие может кардинально изменить подход к производству магнитных материалов и значительно снизить зависимость от нестабильных международных поставок. В отличие от широко используемых сегодня магнитов, содержащих редкие полезные ископаемые, такие как самарий и диспрозий, новый магнит отличается более простой и экологичной составной частью. По словам ученых, магнит, созданный из железа и азота, обладает силой магнитного поля, которая превосходит многие известные материалы на рынке. Это делает его перспективной заменой для постоянн ...>>

Скука полезна творческим людям 16.06.2025

Когда информационный поток непрерывно заполняет наше сознание, умение сделать паузу становится особенно важным. Именно в моменты кажущейся скуки мозг получает возможность перезагрузиться и активировать скрытые ресурсы, стимулирующие творческое мышление и саморефлексию. Ученые из Университета Саншайн-Кост в Австралии провели исследование, которое подтверждает, что короткие периоды скуки могут быть полезны для творческих людей и не только. Скука возникает в тот момент, когда способность человека удерживать внимание начинает снижаться, и активируется так называемая сеть пассивного режима мозга. Эта система отвечает за внутренние мысли и саморефлексию, в то время как активность исполнительной сети, которая обычно помогает сосредоточиться, заметно снижается. Таким образом, скука становится не просто неприятным ощущением, а своего рода переключателем, дающим мозгу возможность отдохнуть от постоянной концентрации. Современный ритм жизни сопровождается постоянной стимуляцией симпатическо ...>>

Случайная новость из Архива

Искусственное солнце 08.08.2019

Американские ученые из Висконсинского университета смогли создать в лабораторных условиях мини-копию Солнца, чтобы лучше узнать о строении настоящей звезды. Проект получил название Big Red Ball.

Проект стал первым, в котором ученым удалось создать реакции, имитирующие магнитное поле Солнца. Полностью все процессы смоделировать в лаборатории не получится. В этот раз, как отмечается, команде удалось реализовать движение солнечной плазмы.

С помощью исследования физики намерены выяснить, почему и как возникает солнечный ветер. Он представляет собой поток заряженных частиц плазмы и газа, который с чрезвычайно высокими скоростями струится с поверхности звезды.

Модель представляет собой полую трехметровую сферу, которая заполнена гелиевой плазмой. Для создания магнитного поля, ученые поместили в центр сферы магниты. В результате, когда физики включили мини-копию, частицы начали вращаться вокруг центра из-за силы внутреннего ядра.

Однако при скорости в 35,5 тыс. км/ч плазма вырвалась за пределы сферы, показав, как работает солнечный ветер. Проект помог ученым разобраться в том, как ему удается преодолеть притяжение звезды.

Другие интересные новости:

▪ STM32G031Y8Y - контроллер на 64 МГц с габаритами SMD-компонента

▪ Письмо от руки делает детей умнее

▪ Боевой робот управляется через спутник

▪ Витаминная бомба из моллюсков

▪ Женский гормон защищает от гриппозных осложнений

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Основы первой медицинской помощи (ОПМП). Подборка статей

▪ статья Обвести вокруг пальца. Крылатое выражение

▪ статья Почему Марк Твен выбрал такой псевдоним? Подробный ответ

▪ статья Отвертка с зажимом. Домашняя мастерская

▪ статья Высоковольтный пробник. Энциклопедия радиоэлектроники и электротехники

▪ статья Веселая дуэль. Физический эксперимент

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:




Комментарии к статье:

Гость
Удобный толковый сайт.


Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025