Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Конструируем валкодер. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Узлы радиолюбительской техники

Комментарии к статье Комментарии к статье

Валкодер - устройство, меняющее какую-то величину в зависимости от поворота оси. Такая штука водится, например, в роликовой мыши или в музыкальном центре. Собственно, сам по себе валкодер довольно прост, но мы усложним задачу тем, что не будем использовать микроконтроллер, как это практикуется во всех промышленных образцах. Валкодер интересен тем, что в нем переплетаются очень многие приемы, применяемые в цифровой и аналоговой электронике. Итак ТЗ: разработать устройство, изменяющее выходное напряжение в диапазоне 0 - 3В, в линейной зависимости от угла поворота оси. Изменение напряжение должно быть реверсивным, с количеством градаций не менее 80. Выходной сигнал ложен быть изолирован он рабочих напряжений устройства (гальваническая развязка). Полное нарастание/спад напряжения происходит при изменении угла поворота оси от 0 до 1440 градусов (4 оборота). Устройство должно сохранять работоспособность в диапазоне питающего напряжения от 8 до 15В. Предусмотреть цифровую индикацию напряжения.

1. С чего начать?

Определим чего от нас хотят:

А. Во-первых "голова" устройства будет цифровой, т.к. будет считать импульсы, создаваемые вращающейся ручкой.
Б. Счет импульсов должен быть реверсивным, т.к. результирующая величина уменьшается и увеличивается в зависимости от направления вращения ручки.
В. Не менее 80 градаций выходного напряжения. Значит для установки напряжения нам потребуется не менее 8 бит двоичного кода (80[10] = 1010000 [2]). 80 градаций за 4 оборота, значит за оборот, ручка должна выдавать 20 импульсов. По одному импульсу через каждые 18 градусов.
Г. Для гальванической отвязки выходного напряжения, в преобразовательном каскаде (цифровой --> аналоговый) нужно будет использовать оптроны.
Д. При заявленном напряжении питания работают микросхемы серий К561 и 564.
Е. Цифровая индикация - простой узел, но потребуется еще 2 дешифратора в 7-и сегментный код.

2. Теперь попробуем описать алгоритм работы

- При включении на выходе 0.

- ЕСЛИ на выходе 0 И есть импульс с датчика И ручка поворачивается по часовой стрелке - добавить 1 в выходной код.

- ЕСЛИ на выходе 0 И есть импульс с датчика И ручка поворачивается против часовой стрелки- не выполнять никаких действий

- ЕСЛИ на выходе 1010000 И есть импульс с датчика И ручка поворачивается по часовой стрелке- не выполнять никаких действий

- ЕСЛИ на выходе 1010000 И есть импульс с датчика И ручка поворачивается против часовой стрелки- вычесть 1 из выходного кода

- ЕСЛИ на выходе число отличное от 0 и 1010000 И есть импульс с датчика И ручка поворачивается по часовой стрелке - добавить 1 в выходной код

- ЕСЛИ на выходе число отличное от 0 и 1010000 И есть импульс с датчика И ручка поворачивается против часовой стрелки - вычесть 1 из выходного кода.

- ЕСЛИ нет импульса с датчика - не выполнять никаких действий.

3. Составим блок-схему устройства

Очевидно, что механическая часть должна сообщать как о самом вращении, так и о его направлении. Значит датчик должен выдавать 2 сигнала. В результате получается, что устройство должно состоять из реверсивного счетчика, блока согласования-развязки и цифроаналогового преобразователя.

Конструируем валкодер. Блок схема устройства

Согласователь должен выводить сигнал о переполнении и запрещать счетчику складывать (если получен максимум) или вычитать (если получен минимум).

4. Конструируем датчик

Воды вылито достаточно, теперь можно говорить более предметно. Механика зависит от электроники, а электроника от механики, поэтому рассмотрим датчик как единое целое. Вполне понятно, что использовать оптический датчик гораздо удобнее, нежели контактный, значит мы пришли к перфорированному колесу. Получить импульсы проще простого, осталось определить направление вращения. Есть два пути: использовать две оптопары (излучатель + приемник) расположив их таким образом, что освещается сначала один приемник, а затем второй. Либо использовать заслонку, скользящую на той же оси, что и колесо (момент, создаваемый осью, должен превышать массу заслонки и она не должна поворачиваться под собственной тяжестью).

Эта заслонка поворачивается синхронно с колесом на определенный угол (не более 4,5 градусов в обе стороны) и открывает/заслоняет дополнительный (стробирующий) фотоприемник. Этот вариант сильно усложняет механику, хотя весьма прост в схемотехнической реализации (логическая схема "И"), поэтому вернемся к первому варианту. Теперь прикинем временные эпюры сигналов, создаваемых датчиком.

Конструируем валкодер. Временая диаграмма

Как видно из рисунка, сигналы приемников смещены по фазе на 90 градусов. Этого легко добиться расположив приемники рядом в одну линию. Таким образом, когда отверстие проходит над приемниками, сначала освещается первый приемник, затем оба, затем второй.

Конструируем валкодер. Датчик 

Предположим, колесо (3) вращается по часовой стрелке вокруг оси (2). Когда отверстие (1) подходит к оптопарам, Сначала освещается правый приемник (5), затем оба, затем только левый (4). И это повторяется 20 раз за один оборот. Из приведенных эпюр видно, что на заднем фронте импульса с правого приемника формируется некий стробирующий сигнал. На нем мы и будем строить результирующий сигнал датчика: во-первых, он генерируется в единственном экземпляре при освещении приемников, во-вторых, он прекрасно характеризует направление вращения.

Совпадая с импульсом левого датчика при вращении по часовой стрелке, он дает возможность выделить положительный импульс при помощи логического элемента "И". Для получения этого чудо-импульса нам понадобится одновибратор для получения нужной длительности. Исходный фронт отрицательный, поэтому его нужно инвертировать. Попробуем набросать схему: петля ООС одновибратора рассчитывается исходя из максимальной частоты вращения колеса - длительность стробирующего импульса не должна превышать 1/4 периода "правого" сигнала. Цепочка С1R4 рассчитывается исходя из того, что формируемый ею импульс должен составлять 0,1Тстр.

Конструируем валкодер

5. Построим самый простой блок в устройстве - счетчик

Хотел нарисовать схему на триггерах, но это показалось мне совсем уж чудовищным глумлением над электроникой. Если интересно, схему реверсивного счетчика на триггерах можно найти в любом справочнике по цифровым микросхемам. Поэтому наша задача сводится к выбору стандартного счетчика из традиционных серий КМОП. Итак, определим требования к счетчику:

- Напряжение питания 8-15В

- Реверс

Таким условиям удовлетворяет К561ИЕ14

Конструируем валкодер. К561ИЕ14

Как видно на картинке, у счетчика есть входы предустановки. При помощи этих входов мы можем быстро выставлять на выходе необходимое напряжение, вызывая из внешнего ОЗУ соответствующий код. Разумеется в ОЗУ должен быть создан некий банк сохраненных уровней. В ТЗ не оговорена такая возможность, поэтому используем входы предустановки для сброса. Так же есть вход запрещения счета (РО). Но использовать его для защиты валкодера от переполнения не получится. Дело в том, что этот вход вовсе блокирует считчик и не дает ему считать даже в свободном направлении, а нам нужно, чтобы при достижении критического уровня в одном направлении, свободное направление оставалось свободным. Поэтому сигнал переполнения мы выделим после дешифратора. Этим сигналом мы будем стробировать вход "С".

Конструируем валкодер

6. Теперь можно заняться сравнительно простыми, но громоздкими узлами - дешифратором и цифро-аналоговым преобразователем (ЦАП)

Вот таким, например, у меня получился дешифратор. Ничего хитрого: массовые дешифраторы и транзисторные ключи для управления оптронами и полупроводниковыми индикаторами СИД-ОА. Дешифраторы вполне традиционные: К561ИД1 - преобразователь двоичного кода в десятичный и К561ИД4 - преобразователь двоичного кода в семисегментный.

Конструируем валкодер

ЦАП будет построен подобным образом. Единственный тонкий момент - определение диапазонов. Сопоставление границ регулировки десяткам и единицам. У нас 7 десятков и 10 единиц. Разделим полное выходное напряжение на 80 градаций: получается 0,04. Умножим на 10 - получается 0,4. Значит, единичный разряд регулирует напряжение в пределах 400мВ. Следовательно, оставшиеся 2,6В управляются десятками. Теперь осталось только подобрать резисторы, переключаемые оптронными ключами и, с их помощью, выстроить нужную шкалу регулировки.

Конструируем валкодер

Вот такое получилось.

Автор: Павел А. Улитин (Soundoverlord); Публикация: cxem.net

Смотрите другие статьи раздела Узлы радиолюбительской техники.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Стерильного нейтрино не существует 15.01.2026

В физике элементарных частиц поиск новых, пока не обнаруженных объектов играет ключевую роль в понимании устройства Вселенной. Иногда такие поиски приводят к громким открытиям, а иногда - к не менее важным отрицательным результатам, которые позволяют отбросить неверные направления. Именно к таким случаям относится недавний вывод ученых о судьбе стерильного нейтрино - одной из самых интригующих гипотетических частиц последних десятилетий. Исследователи из американской лаборатории Fermilab официально сообщили, что им не удалось найти доказательства существования стерильного нейтрино. К такому выводу пришла команда эксперимента MicroBooNE после многолетнего анализа столкновений нейтрино, которые ранее рассматривались как возможный намек на существование четвертого типа этих частиц. Предполагалось, что стерильное нейтрино взаимодействует с материей исключительно через гравитацию, что делало его крайне трудным объектом для обнаружения. В рамках современной физики нейтрино известны в т ...>>

Беспроводные наушники и колонки Fender 15.01.2026

Музыкальная индустрия постепенно адаптируется к цифровым технологиям, и известный производитель музыкальных инструментов Fender расширяет свое присутствие за пределы гитар и усилителей, представляя современные решения для прослушивания музыки. Новые беспроводные наушники и Bluetooth-колонки Fender объединяют богатый звук, модульность и удобство использования как для дома, так и для профессиональной работы. Флагманской новинкой стали наушники Fender Mix, отличающиеся модульной конструкцией. Динамики подключаются к оголовью через порт USB Type-C и могут быть сняты вместе с амбушюрами, что облегчает уход и транспортировку. Один из динамиков оснащен встроенным адаптером USB Type-C для подключения к источнику звука без потерь, поддерживая кодеки LDHC и Fire, а также функцию Auracast. На другом динамике размещен съемный аккумулятор, который обеспечивает до 100 часов работы без активного шумоподавления; при включении ANC время работы сокращается до 52 часов. Наушники доступны по цене $299 ...>>

Польза белкового завтрака 14.01.2026

Правильное питание по утрам играет ключевую роль в поддержании здоровья и контроле веса. Многочисленные исследования подтверждают, что состав завтрака может влиять на аппетит в течение всего дня и качество употребляемой пищи. Австралийские ученые провели масштабный эксперимент, который показал, что употребление белковой пищи с утра помогает дольше чувствовать сытость и предотвращает переедание. В исследовании участвовали более 9 тысяч человек среднего возраста 46 лет. В период с 2011 по 2012 год специалисты анализировали рационы респондентов, оценивая долю основных макронутриентов. В среднем участники потребляли 43% углеводов, 31% жиров, 18% белков, 2% клетчатки и 4% алкоголя. Такой рацион позволил ученым проследить взаимосвязь между утренним приемом пищи и пищевым поведением в течение дня. Выяснилось, что участники, чей завтрак содержал недостаточное количество белка, ощущали повышенный аппетит в течение дня. Они ели больше, чем необходимо, и часто выбирали продукты с высоким со ...>>

Случайная новость из Архива

NCP693 - новый малопотребляющий LDO-стабилизатор 30.12.2009

Компания ON Semiconductor выпустила серию LDO-стабилизаторов с фиксированным выходным напряжением NCP693, рассчитанную на использование в приложениях с высокими требованиями к энергопотреблению. Максимальный выходной ток стабилизаторов - 1 А.

Каждое устройство содержит источник опорного напряжения, усилитель сигнала ошибки, силовой транзистор, резисторы для установки выходного напряжения, схему защиты от перегрузки по току и перегрева. При отсутствии нагрузки стабилизаторы потребляют всего 65 мкА, а в режиме ожидания < 0,15 мкА. NCP693 выпускаются в корпусе DFN с размерами 1,8x2,0x0,50 мм.

Стандартные версии выходного напряжения - 0,8 В, 1,0 В, 1,2 В, 2,5 В и 3,3 В. Ключевые характеристики. Iq - 65 мкА (тип.) при отсутствии нагрузки. Максимальное рабочее напряжение - 6,5 В. Низкое напряжение выхода - до 0,8 В. Точность установки выходного напряжения - 1%. Встроенная функция авторазряда для версии D.

Другие интересные новости:

▪ Открыты 20 новых спутников Сатурна

▪ Робот-мусорщик

▪ Светодиодный текстиль

▪ Создан прибор для имитации запахов в компьютерных играх

▪ Электрокроссовер Lucid Gravity

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Моделирование. Подборка статей

▪ статья Не иметь, где голову приклонить. Крылатое выражение

▪ статья Какие небоскребы замечены в оплавлении панелей машин и нанесении ожогов туристам? Подробный ответ

▪ статья Лох восточный. Легенды, выращивание, способы применения

▪ статья Электронный металлоискатель с низкой рабочей частотой. Энциклопедия радиоэлектроники и электротехники

▪ статья Волшебный рентгеновский аппарат. Секрет фокуса

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2026