Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Коммутация сетевого напряжения с помощью симисторов. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Часы, таймеры, реле, коммутаторы нагрузки

Комментарии к статье Комментарии к статье

В радиолюбительской практике довольно часто приходится сталкиваться с проблемой коммутации сетевого переменного напряжения. Ранее для включения и выключения сетевой нагрузки использовались электромагнитные реле, но как показало время - это не самый надежный способ: контакты реле очень подвержены износу, особенно при использовании в цепях переменного тока и особенно с индуктивной нагрузкой. Тем более, для включения мощных потребителей нужны крупногабаритные реле с существенным управляющим током в обмотке.

К счастью, современная элементная база позволяет обойтись только полупроводниковыми приборами, не используя электромеханических. Итак, разнообразные сетевые нагрузки очень удобно коммутировать с помощью симисторов. Эти полупроводниковые приборы позволяют под действием управляющих мощностей порядка 40-50 мВт коммутировать сетевую нагрузку до десятков киловатт (в зависимости от типа прибора). Далее рассмотрим наиболее удобные схемотехнические решения управления симисторами. Общие принципы управления симистором примерно такие же, как и для обычных тиристоров: если через управляющий электрод в катод тиристора протекает постоянный ток величиной единицы-десятки миллиампер, то как только между анодом и катодом тиристора возникнет разность потенциалов около 1.2-1.5В, он открывается и пребывает в открытом состоянии до тех пор, пока ток через него не уменьшиться практически до нуля (точнее до тока удержания).

Симистор открыть чуть сложнее, так как полярность управляющего напряжения относительно "катода" (не соединенного с корпусом вывода) должна быть такой же, как и полярность напряжения на аноде (корпусе) прибора. Следовательно, если симистор используется для коммутации переменного сетевого напряжения, то управляющее устройство должно уметь выдавать переменное управляющее напряжение, что при использовании управляющих устройств на логических ИМС довольно проблематично. Один из вариантов решения этой проблемы - использование оптрона. Ток через светодиод оптрона может быть все время одного и того же направления, а направление тока через фоторезистор будет меняться при каждом полупериоде сетевого напряжения, обеспечивая открывание симистора. Если же оптрон диодный или транзисторный, то их надо использовать два для управления одним симистором.


Рис.1. Управление симистором с помощью оптрона

Не могу не упомянуть также о оптотиристорах. В одном корпусе находится тиристор и светодиод. Но, к сожалению, оптросимисторов почему-то не делают, а ведь это фактически "буржуйское" твердотельное реле - идеальный прибор для коммутации сетевого напряжения. Итак, используя оптотиристоры тоже довольно легко можно коммутировать сетевое напряжение (рис.2)


Рис.2. Коммутация сетевого напряжения с использованием оптотиристоров

Симистором можно управлять и импульсами: управляющее напряжение присутствует на управляющем электроде только 5-50 мкс, в момент начала роста сетевого напряжения после прохождения через 0. Более того, изменяя временнОе положение управляющего импульса в пределах 0-10 мс относительно начала каждого полупериода можно регулировать мощность, отдаваемую в нагрузку в пределах от 100 до 0 процентов. Импульсное управление позволяет также сделать устройство управления более экономичным, а применение при этом еще и импульсных трансформаторов позволит гальванически развязать сеть и устройство управления. Применение трансформаторов имеет еще одно преимущество: за счет бросков самоиндукции под действием однополярного импульса формируется короткий пакет быстро затухающих разнополярных, естественно, колебаний, легко открывающих любой симистор. Если конструируемое устройство не предназначено для регулирования мощности, а должно только включать/выключать сетевую нагрузку, то управляющие импульсы можно и не синхронизировать с прохождением сетевого напряжения через 0.

Достаточно только подавать их на управляющий электрод симистора с достаточно высокой частотой, чтобы при самых неблагоприятных условиях напряжение на закрытом симисторе не успевало вырасти более чем до нескольких вольт до прихода управляющего импульса. При таком способе управления, как ни странно, уровень помех наводимых в сеть, значительно меньше, чем при синхронизированном управлении. Практическая схема ключа сетевого напряжения, где использован описанный выше принцип подана на рис.3.


Рис.3. Принципиальная схема симисторного выключателя с импульсным управлением

Трансформатор T1 выполняется на ферритовом кольце 1000-2000 НМ размером К10Х6Х4 и содержит две одинаковые обмотки примерно по 50 витков каждая. Провод для намотки в эмалевой изоляции диаметром 0,1-0,2 мм. Взаимная изоляция обмоток очень тщательная! Фазировка обмоток безразлична, так как благодаря диоду VD2 на вторичной обмотке наводятся разнополярные импульсы. Подбирая резистор R2 регулируют длительность управляющего импульса. Чем она меньше, тем меньше ток потребления управляющего устройства, но при очень коротком импульсе не все тиристоры успевают открываться, потому, если нужна повышенная экономичность, R2 придется подбирать на границе четкого открывания симистора. Можно добиться снижения потребляемого системой управления тока менее 10 мА, что очень удобно в случае применения источников питания с емкостным балластом.

Используя показанную на рис.3 схему управления сетевую нагрузку можно включать и с помощью пары обычных тиристоров, надо только трансформатор дополнить еще одной такой же обмоткой, а симистор заменить тиристорами, как на рис.4. Можно также применить один тиристор, но включить его в диагональ диодного моста соответствующей мощности.


Рис.4. Замена симистора

Сейчас для радиолюбителей стали доступны многие электронные компоненты зарубежного производства. Есть среди них и симисторы, прекрасно подходящие для включения/выключения сетевых нагрузок. Наиболее доступными и распространенными на сегодня являются симистор (triacs) производства Philips типов BT134-500 и BT136-500. Эти приборы выполнены в пластмассовых корпусах: BT134 - как у транзисторов КТ815, но без отверстия, а BT136 - как у транзисторов КТ805, с крепежным фланцем.

По сведениям продавцов BT134 рассчитан на ток 6А, а BT136 - 12А, но на многих сайтах можно увидеть, что оба симистор рассчитаны на силу тока не более 4А и выдерживают напряжение 500 В в закрытом состоянии. К сожалению, автор не смог просмотреть документацию с сайта Philips, так как там все документы PDF, а просмотрщика для последних версий под ДОС нету. Отличительной особенностью названных симисторов являются не столько их малые размеры (такие же корпуса имеют отечественные ТС106-10-... в пластмассе), сколько способ управления ими: эти симистор открываются управляющим напряжением отрицательной по отношению к "катоду" полярности при любом направлении тока через симистор. А это позволяет отказаться от применения оптронов и согласующих импульсных трансформаторов.

Практическая схема выключателя вместе с конденсаторным блоком питания показана на рис.5.


Рис.5. Принципиальная схема выключателя с использованием импортных симисторов

Ток потребления устройства управления в "выключенном" состоянии - 1.2 мА, а во "включенном" - 5 мА, что позволило применить в блоке питания совсем маленький конденсатор 0,2 мкФ 400 В. Устройство (рис.5) - это фактически основа для многих электронных устройств, ведь на трех свободных логических элементах DD1 можно собрать много интересных вещей. На рис. 6(a) показана схема мигалки, 6(b) - фотореле, 6(с) - автомата для включения/выключения насоса при касании сенсора E1 поверхности воды, 6(d) - реле времени. Довольно несложно реализовать сенсорный выключатель (рис.7).


Рис.6. Конструкции на логических элементах ИМС К561ТЛ1


Рис.7. Принципиальная схема сенсорного выключателя

Правда, при построении на логических элементах генераторов, при использовании световой индикации потребляемый ток может возрасти, и тогда емкость С1 придется увеличивать. Необходимую емкость подобрать довольно просто: во всех рабочих режимах устройства измеряют ток через стабилитрон, он должен быть не менее 1-2 мА и не более 30 мА. Наиболее часто емкость С1 используется 0.47 или 0.68 мкФ*400В. Мощность нагрузки, коммутируемой устройствами, рассмотренными в этой статье, зависит только от типа симистора (тиристоров) и толщины проводов :-) см. таблицу 1.

Таблица 1. Допустимая мощность нагрузки для разных типов симисторов и тиристоров

Тип прибора Мощность без теплоотвода; Вт Мощность с теплоотвода; Вт Площадь теплоотвода
ВТ134 150 800 25см2
ВТ136 220 800 25см2
KHZGZH 400 (2шт) 2000 2Х50см2
TC106-1G-4 220 2000 100см2
TC11Z-16-4 300 3500 200см2
TC1ZZ-Z5-4 400 5000 400см2
T01Z5-1Q-5 800 (2шт) 2000 2Х50см2

В таблице также даны ориентировочные размеры теплоотводов. Вообще, учитывая падение напряжения на открытом симисторе, которое равно примерно 1 В, можно полагать, что мощность, рассеиваемая на симисторе численно равна току, проходящему через него. Для рассеивания такой мощности нужен теплоотвод такой же площади, как квадратная пластина, со стороной, численно равной в сантиметрах рассеиваемой мощности. В статье не приводятся данные и схемы касающиеся использования симисторов КУ208Г. Это не случайно, так как эти симисторы показали себя с наихудшей стороны и надежно не работали ни в одном устройстве.

Многие образцы КУ208Г разных лет выпусков имели недопустимо большой ток в закрытом состоянии, и после длительного пребывания под напряжением именно в закрытом состоянии сильно разогревались и после наступал пробой. Может их как-то по особому включать надо?

Считаю своим долгом также напомнить радиолюбителям о электробезопасности, так как многие из приведенных схем имеют гальваническую связь с сетью! Не испытывайте судьбу и отключайте от сети устройства, прежде чем лезть в них с паяльником.

Литература

  1. Замятин В. Тиристоры // В помощь радиолюбителю: Сборник. Вып. 110 с. 49
  2. semiconductors.philips.com/acrobat/datasheets/BT134_SERIES_1.pdf

Автор: Андрей Шарый

Смотрите другие статьи раздела Часы, таймеры, реле, коммутаторы нагрузки.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Польза белкового завтрака 14.01.2026

Правильное питание по утрам играет ключевую роль в поддержании здоровья и контроле веса. Многочисленные исследования подтверждают, что состав завтрака может влиять на аппетит в течение всего дня и качество употребляемой пищи. Австралийские ученые провели масштабный эксперимент, который показал, что употребление белковой пищи с утра помогает дольше чувствовать сытость и предотвращает переедание. В исследовании участвовали более 9 тысяч человек среднего возраста 46 лет. В период с 2011 по 2012 год специалисты анализировали рационы респондентов, оценивая долю основных макронутриентов. В среднем участники потребляли 43% углеводов, 31% жиров, 18% белков, 2% клетчатки и 4% алкоголя. Такой рацион позволил ученым проследить взаимосвязь между утренним приемом пищи и пищевым поведением в течение дня. Выяснилось, что участники, чей завтрак содержал недостаточное количество белка, ощущали повышенный аппетит в течение дня. Они ели больше, чем необходимо, и часто выбирали продукты с высоким со ...>>

Технология SmartPower HDR 14.01.2026

Ноутбуки стремительно развиваются в плане графики и мультимедийных возможностей, но яркие дисплеи с высоким динамическим диапазоном (HDR) часто становятся серьезной нагрузкой для аккумуляторов. Длительная работа с видео высокого качества или играми в HDR приводит к быстрой разрядке батареи, что ограничивает мобильность пользователей и снижает комфорт работы. Решить эту проблему призвана новая технология SmartPower HDR, разработанная совместно компаниями Samsung Display и Intel. Суть технологии заключается в динамическом управлении напряжением OLED-панелей. Чипсет ноутбука в реальном времени анализирует пиковую яркость каждого кадра и передает эти данные контроллеру дисплея, который оптимизирует подачу напряжения в зависимости от количества активных пикселей. В отличие от традиционных режимов HDR, где яркость часто фиксируется на максимальном уровне, SmartPower HDR адаптируется к конкретному контенту, что снижает энергопотребление без потери качества изображения. Технология позвол ...>>

Недосып существенно сокращает жизнь 13.01.2026

Сон является одной из самых фундаментальных потребностей человека. Он влияет на обмен веществ, работу сердца и мозга, иммунитет и общее самочувствие. Современный ритм жизни часто заставляет людей жертвовать сном ради работы, учебы или развлечений, но ученые предупреждают: регулярный недосып может иметь далеко идущие последствия для здоровья и долголетия. Исследователи из Орегонского университета здравоохранения и науки пришли к выводу, что сон менее семи часов в сутки связан с сокращением продолжительности жизни. По данным специалистов, хроническая нехватка сна не только вызывает усталость и снижение работоспособности, но и постепенно сказывается на здоровье органов и систем, увеличивая риски развития различных заболеваний. Для анализа ученые использовали обширную национальную базу данных США, сопоставляя показатели ожидаемой продолжительности жизни на уровне штатов с результатами опросов Центров контроля и профилактики заболеваний за период с 2019 по 2025 годы. Они учитывали мно ...>>

Случайная новость из Архива

Новое изобретение снизит стоимость гибких гаджетов 29.08.2013

Группа ученых Техасского университета продемонстрировала один из наиболее важных компонентов, который сможет положить начало бурному развитию гибкой электроники: радиомодуль из графена, работающий достаточно быстро для того, чтобы передавать, принимать и обрабатывать сигналы связи, сообщает Technology Review.

На роль материала для изготовления гибких электронных схем множество претендентов, однако все они имеют проблемы. Одни материалы не позволяют изготовить достаточно быстрые схемы, другие позволяют это сделать, но стоимость таких компонентов получается слишком высокой для массового производства.

По словам Дежи Акинванде (Deji Akinwande), инженера по электротехнике и вычислительной технике Техасского университета в Остине, главы проекта, ученые смогли найти выход из ситуации, использовав графеновые транзисторы. "Я думаю, что сейчас мы вполне можем говорить о гибких смартфонах, планшетах и других устройствах связи", - заявил он.

Графен представляет собой двумерную решетку, образованную слоем атомов углерода толщиной в один атом. Этот материал обладает выдающимися механическими и электрическими свойствами, благодаря чему многие считают его весьма перспективным для микроэлектронной промышленности.

Ученые смогли разместить детали радиомодуля на гибкой подложке из полимера и заставить их переключаться миллиарды раз в секунду - с частотой 2,4 ГГц для технологии Bluetooth и 1 ГГц для сотовой связи. При этом максимальная достигнутая частота составила 25 ГГц.

Ранее исследователи из других университетов пытались создать гибкие компоненты без использования графена, однако изготовление таких устройств оказалось сопряжено с большими затратами.

Основной целью команды Акинванде было добиться как можно более низкой стоимости производства. Сделать это удалось за счет определенной последовательности в процессе изготовления. Сначала ученые формировали необходимые структуры - электроды и затворы транзисторов - на пластиковой подложке, параллельно изготавливая большие листы графена на металле.

Затем графен переносился на пластиковую подложку. На последнем этапе комбинированная структура закрывалась водонепроницаемым слоем. Акинванде объяснил, что экономичность этого метода заключается в отсутствии необходимости обрабатывать сам графен.

Другие интересные новости:

▪ Полностью оптический коммутатор

▪ Док-станция Razer Thunderbolt 4 Dock

▪ Порошок, очищающий воду от кишечной палочки

▪ Принтер для печати светодиодов и фотоэлементов

▪ Хранения энергии в микрочипах

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Типовые инструкции по охране труда (ТОИ). Подборка статей

▪ статья Теодор Драйзер. Знаменитые афоризмы

▪ статья Почему опоссум висит на своем хвосте? Подробный ответ

▪ статья Орехи Югланс. Легенды, выращивание, способы применения

▪ статья Прибор для измерения величины емкости и тока утечки электролитических конденсаторов. Энциклопедия радиоэлектроники и электротехники

▪ статья Токопроводы напряжением до 35 кВ. Токопроводы напряжением выше 1 кВ. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2026