Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Электронное реле контроля зарядки. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Автомобиль. Аккумуляторы, зарядные устройства

Комментарии к статье Комментарии к статье

Каждый автолюбитель желает более полно контролировать состояние системы электропитания в автомобиле. И перезарядка, и недозарядка аккумуляторной батареи негативно сказываются на ее "здоровье ", сокращая и без того недолгий срок службы накопителя энергии. Вопросам обеспечения оптимальных условий эксплуатации батареи аккумуляторов посвящена предлагаемая статья.

Элементом контроля работоспособности системы батарея-генератор-реле-регулятор (стабилизатор бортового напряжения), как правило, служит реле контроля зарядки. Опыт эксплуатации классических "Жигулей" показывает, что можно улучшить информативность контрольной лампы, заменив их стандартное реле РС702 его электронным вариантом.

Анализ контролирующих устройств, опубликованных на страницах журнала "Радио" за последние 75 лет, не выявил варианта, подходящего во всех отношениях. Все-таки оптимальным представляется такой, в котором имеющаяся на щитке приборов сигнальная лампа помимо отсутствия зарядки указывала бы и на избыточное напряжение в системе электропитания

Предлагаемое вниманию читателей устройство отличается от известных полной конструктивной и электрической взаимозаменяемостью с реле РС702, быстрым монтажом и демонтажом. Оно реализует смешанный принцип контроля состояния бортовой сети автомобиля. Отсутствие или наличие зарядки батареи определяется не по уровню напряжения, а по отсутствию или наличию зарядного тока. Именно так работает и реле РС702.

Этот принцип дает определенные преимущества: обеспечивает простоту и надежность устройства, отсутствие необходимости в определении и установке порога срабатывания, практически независимость от температуры, что немаловажно для измерительных узлов. Мониторинг по превышению напряжения - традиционный, посредством датчика максимального напряжения (ДМН).

Реле контроля заряда функционально можно разделить на следующие составные части (см. принципиальную схему): датчик тока зарядки с усилителем напряжения - R1-R3, VT1; ДМН - R5-R7, DA1; генератор импульсов - С2, R8, DD1.1; усилитель тока - VT2; буфер-инвертор - DD1.2-DD1.4.

Электронное реле контроля зарядки

При замыкании контактов выключателя SA1 "Зажигание" (двигатель не запущен или работает на малых оборотах) транзистор VT1 остается закрытым, так как в его базовой цепи протекает незначительный обратный ток диодов VD2, VD4, VD6 генераторного блока. Поэтому напряжение на конденсаторе С1 и нижнем по схеме входе триггера Шмитта DD1.1 практически равно нулю.

ДМН представляет собой компаратор напряжения, выполненный на управляемом стабилитроне DA1 (TL431ILP, отечественный аналог КР142ЕН19 [1]). Стабилитрон закрыт, поскольку на его управляющем выводе напряжение, снимаемое с делителя R5R6, меньше внутреннего образцового (оно равно 2,5 В).

Поэтому конденсатор С2 через блокирующий диод VD1 устройства заряжен почти до питающего напряжения. Генератор импульсов заторможен, и на его выходе высокий уровень. На выходе буфера DD1.2-DD1.4 низкий уровень, транзистор VT2 открыт и насыщен Светит контрольная лампа HL1, указывающая на отсутствие зарядного тока батареи.

При увеличении частоты вращения коленчатого вала двигателя напряжение, вырабатываемое генератором G1 автомобиля, увеличивается. Как только оно превысит напряжение на аккумуляторной батарее, открываются диоды трехфазного моста VD1- VD6 генераторного блока. Появляется пульсирующий ток в базовой цепи транзистора VT1. Вследствие этого на его коллекторе формируется импульсная последовательность с переменной скважностью. Интегрирующий конденсатор С1 выделяет постоянную составляющую. Как только ее значение превысит ориентировочно две трети напряжения питания микросхемы, триггер Шмитта DD1.1 переключится в противоположное состояние. В результате транзистор VT2 закрывается и лампа HL1 выключается.

Отметим, что по логике работы в обоих описанных режимах устройство не отличается от реле РС702.

Работа в третьем режиме зависит от уровня напряжения в бортовой сети. Если на автомобиле установлен термокомпенсированный стабилизатор, подобный [2, 3], то верхний предел контроля можно принять равным 15,5... 16 В. При использовании обычного реле-регулятора (стабилизатора) 121.3702 указанный порог можно уменьшить до 14,5...15 В.

По достижении выбранного порога срабатывает ДМН и напряжение на аноде блокировочного диода VD1 уменьшается примерно до 2 В. Заряженный конденсатор С2 закрывает диод VD1, снимая блокировку с генератора импульсов.

Конденсатор С2 начинает разряжаться через резистор R8 и выход триггера Шмитта DD1.1. Как только напряжение конденсатора, уменьшаясь, достигнет трети напряжения питания микросхемы, триггер DD1.1 переключится и на его выходе появится высокий уровень. Конденсатор снова начнет заряжаться через резистор R8 с выхода триггера - генератор начнет вырабатывать прямоугольные импульсы.

В результате транзистор VT2 будет периодически открываться и закрываться, лампа HL1 будет мигать, сигнализируя о нарушении в работе электрооборудования, приводящем к превышению напряжения бортовой сети. Применение микросхемы с триггерами Шмитта обусловлено их хорошей помехозащищенностью из-за "гистерезисной" характеристики.

Элементы HL2, R11 образуют дублирующий индикатор. Он не обязателен, но выручит при перегорании лампы HL1.

В реле вместо КТ502А может работать любой кремниевый р-n-р транзистор, а вместо КТ973А - любой составной кремниевый структуры p-n-р с допустимым током коллектора не менее 2А. Микросхему КР1561ТЛ1 желательно не менять на другие ввиду ее большей нагрузочной способности. При выборе микросхемы DA1 следует иметь в виду, что рабочий температурный интервал стабилитрона TL431ILP (и его разновидностей, относящихся к промышленному стандарту) - от -40 до +80 °С; у отечественного же аналога КР142ЕН19 - от -10 до +70 °С.

Реле собрано на монтажной плате размерами 47x29 мм из текстолита или гетинакса толщиной 1 мм. Соединения выполнены проводом МГТФ сечением 0,07 мм2, а наиболее сильноточные - 0,35 мм2. Плата прикреплена к гетинаксовой плате реле РС702 через две пластмассовые втулки.

Для установки электронного аналога необходимо развальцевать металлический кожух реле, снять с платы исполнительное электромагнитное реле, укоротить до 3...5 мм вывод 87. К выводам 30/51, 85 и 87 припаять гибкие проводники. Общий провод электронного аналога реле соединить с металлическим кожухом для обеспечения контакта при монтаже с корпусом автомобиля. После установки платы в кожух заново завальцевать его по периметру.

Для проверки работоспособности реле необходим регулируемый источник постоянного напряжения от 10 до 16 В с выходным током до 1,5 А. Плюсовой вывод источника соединяют с выводом 87, минусовый - с общим проводом. К выводу 30/51 подключают индикаторную автомобильную лампу АА12-3.

Изменяя питающее напряжение от 10 до 14 В, контролируют включение лампы. Соединяют вывод 85 через резистор сопротивлением 51...100 Ом с общим проводом - лампа должна выключиться. Затем плавно увеличивают питающее напряжение и наблюдают импульсное включение и выключение лампы. "Гистерезис" порогового напряжения обычно не превышает 20 мВ.

Подобно описанному проверяют работоспособность реле на автомобиле. Включают зажигание - индикаторная лампа на бортовом щитке включается и светит непрерывно. Запускают двигатель, и в режиме холостого хода отмечают выключение лампы.

Замыкают между собой проводники, подходящие к выводам 15 и 67 реле-регулятора, предварительно сняв их со штырей. Осторожно увеличивают обороты двигателя, и в зависимости от нагрузки бортовой сети контролируют импульсный режим работы лампы с частотой в несколько герц (она зависит от номиналов элементов R8, С2).

Литература

  1. Интегральные микросхемы. Микросхемы для линейных источников питания и их применение (справочник). - М.: Додэка, 2001.
  2. Бирюков С. Простой термокомпенсированный регулятор напряжения. - Радио, 1994, № 1, с. 34, 35.
  3. Ломанович В. Термокомпенсирован ный регулятор напряжения. - Радио, 1985, № 5, с. 24-27.

Автор: В.Хромов, г.Красноярск

Смотрите другие статьи раздела Автомобиль. Аккумуляторы, зарядные устройства.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Кислотность океана разрушает зубы акул 03.10.2025

Мировые океаны выполняют важнейшую функцию - они поглощают около трети углекислого газа, выбрасываемого в атмосферу. Это помогает замедлять темпы глобального потепления, но имеет и обратную сторону. Растворяясь в воде, CO2 образует угольную кислоту, которая повышает концентрацию водородных ионов и приводит к снижению pH. Вода становится более кислой, а последствия этого процесса уже заметны для морских экосистем. Средний показатель кислотности океана сейчас равен примерно 8,1, тогда как еще недавно за условную норму брали значение 8,2. По прогнозам, к 2300 году уровень может упасть до 7,3 - это сделает океан почти в десять раз кислее нынешнего состояния. Для обитателей морей подобные изменения означают не просто сдвиг химического равновесия, а реальную угрозу физиологическим процессам, начиная от формирования раковин у моллюсков и заканчивая охотничьим поведением акул. Чтобы выяснить, как именно кислотная среда отражается на зубах акул, группа немецких исследователей провела эксп ...>>

Почтовый космический корабль Arc 03.10.2025

Космические технологии становятся частью инфраструктуры, способной повлиять на логистику, медицину и даже военную сферу. Идея использовать орбиту как глобальный склад для срочных поставок звучала еще недавно как научная фантастика, но стартап Inversion пытается превратить ее в практическое решение. Компания Inversion появилась в начале 2021 года благодаря Джастину Фиаскетти и Остину Бриггсу, которые на тот момент были студентами Бостонского университета. Их замысел состоял в том, чтобы сделать возможной доставку грузов не только через спутниковые сети данных, но и в буквальном смысле - физических предметов. В основе лежит простая мысль: если космос обеспечивает доступ к любой точке Земли, то и грузы должны перемещаться тем же маршрутом. Уже за три года работы команда из 25 специалистов успела построить демонстрационный аппарат "Ray". Его запуск состоялся в рамках миссии SpaceX Transporter-12. Устройство весом 90 килограммов проверяло ключевые технологии Inversion, включая двухком ...>>

Лазерное обогащение урана 02.10.2025

Ядерная энергия остается одним из ключевых источников стабильного электричества, особенно для стран с растущими потребностями в энергоснабжении. Однако обеспечение бесперебойных поставок топлива для атомных станций требует современных технологий обогащения урана, которые одновременно эффективны и безопасны. Американская компания Global Laser Enrichment (GLE) делает значительный шаг в этом направлении, завершив масштабное тестирование лазерной технологии обогащения урана. Демонстрационная программа была проведена на объекте в Уилмингтоне, Северная Каролина. Тестирование технологии SILEX (Separation of Isotopes by Laser EXcitation), разработанной австралийской Silex Systems, стартовало в мае 2025 года и продлится до конца года. В ходе экспериментов компания планирует получить сотни фунтов низкообогащенного урана (LEU), который может быть использован в качестве топлива для атомных электростанций. GLE была создана в 2007 году для коммерциализации лазерных методов обогащения урана в С ...>>

Случайная новость из Архива

Мозг человека и временной поток 31.05.2024

Всегда ли вы мечтали отправиться в путешествие во времени, как это показывают в книгах и фильмах о фантастике? Новое исследование предлагает, что ваш мозг может сделать это - хотя и в немного другом формате.

Французские и голландские исследователи обнаружили, что мозг человека способен на ментальные путешествия во времени, обладая своим собственным внутренним потоком времени. Пусть это и не так фантастично, как в книгах, но это все равно захватывающее открытие.

Научная работа была выполнена с использованием пациентов, страдающих от эпилепсии, которые должны были пройти хирургическое вмешательство. Электроды, установленные в их мозге, позволили ученым наблюдать активность нейронов во время различных экспериментов.

В результате исследования было выяснено, что определенные области мозга активируются даже в отсутствие внешних стимулов. Это дает основание полагать, что мозг может самостоятельно создавать внутренние ощущения времени и последовательности событий, позволяя вам отправиться в путешествие во времени просто силой мысли.

Хотя ментальные путешествия во времени, возможно, не сопоставимы с фантастическими приключениями, представленными в книгах и фильмах, они все равно могут быть удивительным погружением внутрь вашего собственного сознания. Это открытие открывает новые перспективы для понимания работы человеческого мозга и его способности к внутренним путешествиям.

Другие интересные новости:

▪ Самый большой вирус

▪ Cудоходная компания по транспортировке уловленного CO2

▪ Вода из воздуха

▪ Разблокировка гаджета с помощью уха

▪ Квантовый процессор на 127 кубитов

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Дом, приусадебное хозяйство, хобби. Подборка статей

▪ статья Самого главного глазами не увидишь. Крылатое выражение

▪ статья Кто получил первый антибиотик? Подробный ответ

▪ статья Функциональный состав телевизоров Kansai. Справочник

▪ статья Самодельные детекторы. Энциклопедия радиоэлектроники и электротехники

▪ статья Входная цепь трансивера. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025