Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Акустический светорегулятор. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Освещение

Комментарии к статье Комментарии к статье

Предлагаемый регулятор позволяет дистанционно, просто хлопая в ладоши, включать и выключать торшер или другой светильник с лампами накаливания и выбирать один из трех уровней его яркости. Изменение яркости, а том числе при включении, происходит плавно, что заметно продлевает срок службы ламп.

Хлопок в ладоши выбран в качестве управляющего сигнала по той причине, что по акустическим характеристикам он заметно отличается от речи или музыки. Конечно, нельзя исключить срабатывания регулятора от других резких звуков (взрывов пиротехники, автомобильных гудков или выхлопов), поэтому не стоит применять этот прибор вне хорошо звукоизолированного помещения.

Потребляемая светорегулятором мощность не превышает 4 ВА и зависит в основном от тока холостого хода первичной обмотки трансформатора питания. Это в несколько раз меньше того, что потребляет в ждущем режиме музыкальный центр со встроенными часами или телевизор.

Схема регулятора представлена на рис. 1. Сигнал, принятый микрофоном ВМ1, поступает на усилитель - ОУ DA1.1. Делитель напряжения R2R3 задает рабочую точку ОУ. Через резистор R1 на электретный микрофон подано напряжение питания. Конденсатор С1 - разделительный. Коэффициент усиления отрицательных полуволн сигнала на единицу больше отношения значений сопротивления резисторов R5 к R4. Положительные "срезает" диод VD1.

Акустический светорегулятор
(нажмите для увеличения)

При достаточной амплитуде (более 0,9 В) сигнал с выхода усилителя запускает одновибратор DA3, генерирующий прямоугольный импульс длительностью приблизительно 0,4 с, зависящей от постоянной времени цепи R11C6. Пока импульс не закончился, никакие шумовые воздействия на микрофон ВМ1 не имеют эффекта, что предотвращает непредсказуемые изменения состояния регулятора.

Резисторы R9 и R10 не только задают начальное напряжение на выводе 2 одно-вибратора DA3, но и вместе с конденсатором С4 образуют фильтр. Он пропускает только высокочастотные составляющие, которыми богат спектр хлопка в ладоши, и подавляет низкочастотные, свойственные другим сигналам и помехам.

Два триггера микросхемы DD1 образуют счетчик, подсчитывающий число хлопков (импульсов одновибратора DA3). Резисторы R19-R21 и диоды VD6, VD7 - АЦП, напряжение на выходе которого (инвертирующем входе ОУ DA1.2) зависит от состояния триггеров, т. е. от числа хлопков. Конденсатор С11 обеспечивает сравнительно медленный переход от одного уровня напряжения к другому.

При включении питания положительный импульс, сформированный цепью R13C9VD4, устанавливает счетчик в исходное состояние с высоким логическим уровнем на выводах 1 и 13. Напряжение на инвертирующем входе ОУ DA1.2 максимально, так как резисторы R19 и R20 соединены, по существу, параллельно через открытые диоды VD6 и VD7. В этом же состоянии открыт транзистор VT4, так как на его эмиттере - низкий логический уровень с инверсного выхода триггера DD1.2 (вывод 12), а через резистор R17 в цепи базы течет ток. О назначении этого транзистора будет сказано ниже.

После первого хлопка оба триггера изменят свое состояние и напряжение на инвертирующем входе ОУ DA1.2 станет нулевым, так как диоды VD6 и VD7 будут закрыты Второй хлопок установит высокий уровень на выходе триггера DD1.1, оставляя состояние триггера DD1.2 неизменным. Теперь диод VD6 открыт, VD7 закрыт, а выходное напряжение АЦП формирует резистивный делитель R19R21. Третий хлопок изменит состояние обоих триггеров. Диод VD6 будет закрыт, a VD7 открыт. Выходное напряжение задаст делитель R20R21. И, наконец, четвертый хлопок вернет устройство в исходное состояние. Дальнейшие хлопки приведут к повторению того же цикла.

Временные диаграммы сигналов в характерных точках светорегулятора изображены на рис. 2 На базу транзистора VT1 подано несглаженное пульсирующее напряжение с анода диода VD3 (выхода выпрямителя на диодном мосте VD2). В конце каждого полупериода и в начале следующего этот транзистор некоторое время закрыт, a VT2 - открыт и разряжает конденсатор С10. После закрывания транзистора VT2 конденсатор заряжается через резистор R14 и напряжение на неинвертирующем входе (выводе 6) ОУ DA1.2 растет почти линейно.

Акустический светорегулятор
(нажмите для увеличения)

ОУ DA1.2 (служащий в данном случае компаратором) формирует на выходе (выводе 10) последовательность положительных импульсов, длительность которых тем больше, чем меньше напряжение на инвертирующем входе (выводе 7) ОУ. Если оно равно нулю, на выходе ОУ - положительное постоянное напряжение, а если превышает амплитуду пилообразного на выводе 6, выходное напряжение ОУ близко к нулю, но не равно ему из-за особенностей устройства ОУ Чтобы при низком уровне напряжения на выходе ОУ DA1.2 транзистор VT3 был надежно закрыт, предусмотрен стабилитрон VD5, "отсекающий" излишек напряжения.

При некотором сочетании номиналов резисторов R19-R21 напряжение на инвертирующем входе ОУ DA1.2 в исходном состоянии регулятора может оказаться меньшим амплитуды "пилы", в результате лампа EL1 не будет выключена полностью. Для исключения такой ситуации предусмотрен транзистор VT4, речь о котором шла выше. Когда он открыт, пилообразное напряжение ограничено на очень низком уровне. Диод VD8 устраняет влияние транзистора VT4 на работу генератора, когда на выводе 13 триггера DD1.2 установлен высокий логический уровень.

В коллекторную цепь транзистора VT3 включен излучающий диод оптрона U1. Если транзистор открыт, открыт и фотодинистор оптрона, замыкающий через диодный мост VD9 и резистор R22 цепь управлений симистора VS1. В зависимости от доли длительности каждого полупериода, в течение которой симистор открыт, изменяются эффективное значение поступающего на лампу EL1 напряжения и яркость ее свечения. Так как симистор открывается и в положительных, и в отрицательных полупериодах, мерцание лампы незаметно и при пониженной яркости.

Налаживание светорегулятора начинают с установки необходимой акустической чувствительности. Учтите, с увеличением номинала резистора R5 растет не только чувствительность, но и вероятность ложных срабатываний от посторонних звуков. Уровни промежуточных ступеней яркости можно изменить по своему усмотрению, подбирая номиналы резисторов R19 и R20. Увеличение емкости конденсатора С11 приводит к более медленному нарастанию или спаду яркости после очередного хлопка.

Печатная плата светорегулятора и расположение элементов на ней изображены на рис. 3. Конденсаторы С6 и С10 должны быть пленочными серии К73-9 или К73-17. Керамические конденсаторы (К10-17 или импортные) здесь нежелательны из-за большого ТКЕ. Однако их можно применять в качестве С1, С2, С4 и С8. Оксидные конденсаторы - любые, подходящие по габаритам и рабочему напряжению. Мощность резисторов R18 и R22 не должна быть меньше указанной на схеме.

Акустический светорегулятор

Стабилитрон КС133Г можно заменить другим (например, импортным) с таким же или немного меньшим напряжением и возможно меньшим минимальным током стабилизации. В качестве диода VD3 подойдет любой выпрямительный с допустимым прямым током не менее 0,3 А, вместо остальных - диоды серий КД510, КД521, КД522. Транзисторы VT1-VT4 - любые структуры п-p-n с допустимым током коллектора не менее 100 мА и коэффициентом h21Э более 50. Микросхему К140УД20 можно заменить на КР140УД20А, К561ТМ2 - на К1561ТМ2, а вместо интегрального стабилизатора КР142ЕН8Б применить КР1157ЕН12 (с любым буквенным индексом), КР1170ЕН12 или импортный с напряжением стабилизации 12 В и допустимым током нагрузки не менее 50 мА.

Электретный микрофон ВМ1 можно заменить электродинамическим, в этом случае резистор R1 устанавливать не следует. Симистор ТС112-10 можно заменить на КУ208В или КУ208Г. При общей мощности ламп светильника более 100 Вт симистор необходимо установить на теплоотвод. Плавкую вставку FU1 выбирают с током срабатывания, превышающим в 1,5...2 раза номинальный ток светильника.

Трансформатор Т1 - любой, обеспечивающий напряжение на вторичной обмотке 12... 16 В при токе не менее 50 мА. При возможности выбора предпочтение следует отдать трансформатору с минимальным значением тока холостого хода первичной обмотки.

Описанный акустический светорегулятор нетрудно превратить в сенсорный. Достаточно заменить микрофон ВМ1 и резистор R1 металлической пластиной, соединенной с левым (по схеме) выводом конденсатора С1. Регулятор будет срабатывать при касании пластины рукой.

Автор: С.Беляев, г.Тамбов

Смотрите другие статьи раздела Освещение.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Оптимальная продолжительность сна 12.11.2025

Сон играет ключевую роль в поддержании здоровья, когнитивных функций и общего самочувствия. Несмотря на широко распространенный стереотип о восьмичасовом сне, последние исследования показывают, что оптимальная продолжительность сна для большинства здоровых взрослых ближе к семи часам. Эволюционный биолог из Гарварда, Дэниел Э. Либерман, утверждает, что традиционная норма восьми часов сна - это скорее культурное наследие индустриальной эпохи, чем биологическая необходимость. По его словам, полевые исследования, проведенные в сообществах, не использующих электричество, показывают, что средняя продолжительность сна составляет 6-7 часов, что значительно отличается от общепринятого стандарта. Современные эпидемиологические данные подтверждают этот взгляд. Исследования выявили так называемую "U-образную кривую" зависимости между продолжительностью сна и рисками для здоровья. Минимальные показатели заболеваемости и смертности наблюдаются именно у людей, спящих около семи часов в сутки. ...>>

Дефицит кислорода усиливает выброс закиси азота 12.11.2025

Парниковые газы играют ключевую роль в изменении климата, а закись азота (N2O) - один из наиболее опасных среди них. Этот газ не только втрое сильнее углекислого газа в удержании тепла, но и разрушает озоновый слой. Недавнее исследование американских ученых показало, что микробы в зонах с низким содержанием кислорода активно производят N2O, усиливая глобальные климатические риски. Команда из Университета Пенсильвании изучала прибрежные воды у Сан-Диего и провела наблюдения на глубинах от 40 до 120 метров в Восточной тропической северной части Тихого океана - одной из крупнейших зон дефицита кислорода. Исследователи сосредоточились на том, как морские микроорганизмы превращают нитраты в закись азота. В ходе работы выяснилось, что существует два пути образования N2O. Один путь начинается с нитрата, другой - с нитрита. На первый взгляд более короткий путь должен быть эффективнее, однако микробы, использующие нитрат, продуцируют больше газа, поскольку этот "сырьевой" источник более д ...>>

Омега-3 помогают молодым кораллам выживать 11.11.2025

Сохранение коралловых рифов становится все более актуальной задачей в условиях глобального изменения климата. Молодые кораллы особенно уязвимы на ранних стадиях развития, когда стрессовые условия и нехватка питательных веществ могут привести к высокой смертности. Недавнее исследование ученых из Технологического университета Сиднея показывает, что специальные пищевые добавки способны существенно повысить выживаемость личинок кораллов. В ходе работы исследователи разработали особый состав "детского питания" для коралловых личинок. В него вошли масла, богатые омега-3 жирными кислотами, а также важные стерины, необходимые для формирования клеточных мембран. Личинки, получавшие эти добавки, развивались быстрее, становились крепче и демонстрировали более высокую устойчивость к стрессовым факторам. Особое внимание ученые уделили липидам. Анализ показал, что личинки активно усваивают эти вещества, что напрямую влияет на их жизнеспособность. Стерины, содержащиеся в корме, повышают устойчи ...>>

Случайная новость из Архива

Зависимость от видеоигр признана болезнью 22.06.2018

Патологическое влечение к видео- и онлайн играм или же "игровое расстройство" теперь считается полноценной болезнью.

Оперативное вмешательство требуется тогда, когда больной утрачивает контроль над временем проведенным в игре, отдает играм наибольший приоритет, в ущерб жизненным интересам и ежедневной активности, а также продолжает играть, несмотря на негативные последствия. Диагноз игровой зависимости должен ставиться, если пациенты охвачены патологическим влечением на протяжении не менее чем 12 месяцев.

"Модель поведения достаточно серьезна, она приводит к значительному ухудшению в личной, семейной, социальной, образовательной, профессиональной и других важных областях жизни" - объясняют в ВОЗ.

Внесение недуга в перечень привлечет внимание как общественности, так и ученых к изучению проблемы. Новый список болезней еще подлежит утверждению на ассамблее в мае 2019 года.

Другие интересные новости:

▪ Компактная видеокамера Sanyo Hacti HD1

▪ Спиральная подводная турбина TideGen для приливной энергетики

▪ Микропластик расщепляет клетки легких человека

▪ Йогурт может избавить от депрессии

▪ Запущена самая мощная в мире приливная турбина

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Палиндромы. Подборка статей

▪ статья Дизель. История изобретения и производства

▪ статья Кто такие грации? Подробный ответ

▪ статья Таран альпийский. Легенды, выращивание, способы применения

▪ статья Простой инфракрасный генератор. Энциклопедия радиоэлектроники и электротехники

▪ статья Собирание пазла. Секрет фокуса

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025