Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Преобразователь напряжения для радиоуправляемой модели. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Радиоуправление

Комментарии к статье Комментарии к статье

Бортовые источники питания радиоуправляемых моделей имеют, как правило, номинальное напряжение 4,5...12 В. Высококачественные электродвигатели на такое напряжение бывают в продаже довольно редко и по немалой цене. В то же время ассортимент доступных электродвигателей на напряжение 24...27 В достаточно широк, но для них необходим преобразователь напряжения, подобный предлагаемому автором статьи.

Существенное преимущество использования электродвигателей на повышенное напряжение - уменьшенный потребляемый ток, что облегчает требования к транзисторам выходных каскадов сервоприводов рулевых машинок и регуляторов хода. Повышается КПД узлов управления двигателей, что экономит ограниченные энергетические ресурсы, имеющиеся на борту модели.

Разработанный преобразователь напряжения позволяет применять электродвигатели с номинальным напряжение 24...27 В совместно с аппаратурой радиоуправления [1]. Для рулевых машинок моделей неплохо подходят, например, двигатели серии ДПР с полым ротором, имеющие малую инерционность при трогании с места и реверсировании. Сервоусилители регулятора хода и рулевой машинки должны быть построены в соответствии с рекомендациями, приведенными в [2]. Как автономное устройство, данный преобразователь напряжения можно использовать и в других целях.

Схема устройства изображена на рис. 1. Это - так называемый обратноходовый инвертор с широтно-импульсной стабилизацией выходного напряжения, отличающийся высоким КПД. При входном напряжении 4,5...9 В стабилизированное выходное напряжение может быть установлено любым в пределах 18...27 В, изменяясь не более чем на 0,1 В при увеличении тока нагрузки от 1 до 500 мА. КПД преобразователя с полной нагрузкой - 85 %.

Преобразователь напряжения для радиоуправляемой модели
(нажмите для увеличения)

Эпюры напряжения в характерных точках схемы, приведенные на рис. 2, получены на компьютерной модели устройства с помощью программы Micro-Cap 6.22 и полностью совпадают с осциллограммами сигналов в реальном преобразователе.

Преобразователь напряжения для радиоуправляемой модели

Задающий генератор на элементах DD1.1 и DD1.2 вырабатывает прямоугольные импульсы. На входы 8, 9 элемента DD1.3 они поступают продифференцированными цепью C3R2R3. Номиналы резисторов R2 и R3 выбраны с таким расчетом, что постоянная составляющая напряжения в точке их соединения несколько превышает пороговый уровень Un, при котором элемент DD1.3 изменяет свое состояние. Отрицательные выбросы, пересекая порог, формируют на выходе элемента DD1.3 (вывод 10) короткие положительные импульсы. Последние заряжают конденсатор С5 через малое прямое сопротивление участка база-эмиттер транзистора VT2.

По окончании импульса левая (по схеме) обкладка конденсатора С5 оказывается соединенной с общим проводом, а напряжение, до которого зарядился конденсатор, - приложенным к базе транзистора VT2 в отрицательной полярности, закрывая его. Далее начинается перезарядка конденсатора С5 коллекторным током транзистора VT1. Скорость этого процесса зависит от напряжения на базе VT1. Транзистор VT2 остается закрытым, пока напряжение на его базе не достигнет приблизительно 0,8 В. В результате длительность положительных импульсов на коллекторе VT2 и входах 12, 13 элемента DD1.4 зависит от режима работы транзистора VT1. Дважды проинвертированные элементом DD1.4 и транзистором VT3 импульсы открывают силовой ключ - полевой транзистор VT4.

При открытом транзисторе VT4 ток в катушке индуктивности L1 нарастает по линейному закону. После закрывания транзистора этот ток не прерывается, продолжает течь, спадая, через диод VD1 и заряжает накопительный конденсатор С8. Установившееся напряжение на этом конденсаторе превышает напряжение питания во столько раз, во сколько время накопления энергии в магнитном поле катушки L1 (длительность положительных импульсов на затворе транзистора VT4, см. рис. 2) превышает время ее передачи в конденсатор С8 (длительность пауз между импульсами там же).

Часть выходного напряжения с движка подстроечного резистора R14 поступает на инвертирующий вход усилителя постоянного тока на ОУ DA2. На его неинвертирующий вход подано с резистивного делителя R4R5 образцовое напряжение. Выходное напряжение ОУ, пропорциональное разности образцового и выходного (с учетом делителя R13R14) напряжения, поступает на базу транзистора VT1 и управляет длительностью импульсов, открывающих транзистор VT4. Таким образом образуется замкнутая цепь автоматического регулирования.

Если выходное напряжение снизилось (например, в результате увеличения тока нагрузки), напряжение на инвертирующем входе ОУ уменьшится, а на его выходе - увеличится. В результате упадет эмиттерный ток транзистора VT1, протекающий через резистор R8, а вместе с ним - и коллекторный. Конденсатор С5 будет перезаряжаться медленнее. Длительность открытого состояния транзистора VT4 возрастет, выходное напряжение преобразователя увеличится.

Напряжение питания основных узлов преобразователя стабилизировано интегральным стабилизатором DA1.

Устройство собрано на односторонней печатной плате размерами 70x55 мм, показанной на рис. 3. Подстроечный резистор R14 - СПЗ-38Б или РП1-63М. Остальные пассивные элементы - любого типа, подходящие по параметрам и габаритам.

Преобразователь напряжения для радиоуправляемой модели
(нажмите для увеличения)

В качестве микросхемы DD1, кроме К561ЛА7, можно использовать К561ТЛ1, прочие микросхемы серии К561 при напряжении питания 3 В работают неустойчиво. По той же причине не следует заменять микросхему К140УД608 (DA2) другими ОУ. Транзисторы VT2, VT3 могут быть любыми серии КТ315 или КТ3102, aVT1 - серий КТ361, КТ3107.

КПД преобразователя заметно зависит от падений напряжения на диоде VD1 и на открытом транзисторе VT4. Последнее пропорционально приводимому в справочниках сопротивлению канала открытого транзистора. Поэтому, подбирая замены указанным транзистору и диоду, следует обращать особенное внимание на эти параметры, выбирая приборы, у которых они минимальны. Напряжение отсечки полевого транзистора должно быть не более 4 В. Амплитудное значение коммутируемого им тока в рассматриваемом случае значительно больше тока нагрузки, поэтому транзистор следует выбирать с допустимым током стока не менее 6 А. Если под нагрузкой транзистор VT4 заметно нагревается, его необходимо снабдить теплоотводом, место для которого на плате предусмотрено. Диод VD1 должен быть рассчитан на прямой ток не менее 10 А. Указанный на схеме КД2998В можно заменить на КД213А.

Катушка L1 индуктивностью 18...20 мкГн должна иметь малый магнитный поток рассеивания, поэтому для нее выбран броневой магнитопровод Б-26 из феррита М1500НМ. Обмотку из пяти витков жесткого изолированного провода диаметром 1,5...2 мм наматывают на оправке подходящего диаметра, сняв с оправки, защищают слоем изоляционной ленты и помещают в магнитопровод. Между его чашками необходим немагнитный зазор 0,2 мм. Изоляционную прокладку соответствующей толщины укладывают между центральными кернами. Это предотвращает поломку чашек при стягивании магнитопровода винтом. Чтобы уменьшить площадь платы, катушку L1 крепят к ней лежащей на боку. Выводы обмотки вставляют в соответствующие отверстия и припаивают к контактным площадкам.

Конденсаторы С7 и С9 показаны на схеме (см. рис. 1) и чертеже платы (рис. 3) штриховыми линиями. Обычно в них нет необходимости, но если транзистор VT4 сильно греется, а на осциллограмме напряжения на его затворе видны "паразитные" положительные импульсы в интервалах между основными, установка этих конденсаторов может помочь. Их емкость подбирают опытным путем.

Приступая к проверке собранного преобразователя, следует иметь в виду, что при выходном напряжении 27 В и токе нагрузки 0,5 А первичный источник питания напряжением 6 В должен быть рассчитан на ток не менее 2,5 А. Перед первым включением преобразователя движок подстроечного резистора R14 должен находиться в среднем положении, в дальнейшем с его помощью устанавливают необходимое выходное напряжение.

Если преобразователь не работает, следует временно выпаять катушку L1 и, подав в выходную цепь напряжение +27 В от внешнего источника, добиться, чтобы форма сигналов в точках, указанных на рис. 2, соответствовала приведенной на этом рисунке.

При необходимости преобразователь можно пересчитать на другое входное и выходное напряжение по методике, изложенной в [3]. Исходные данные: минимальное напряжение первичного источника - Uмин; выходное напряжение - Uвых; максимальный ток нагрузки - Iн.

Расчет ведут в следующем порядке:

1. Мощность, отдаваемая в нагрузку,

2. Мощность, потребляемая точника,

(предполагается, что КПД преобразователя - не менее 80 %).

3. Среднее значение тока, потребляемого от источника,

4. Ток катушки L1 (амплитудное значение),

5. Выбираем полевой транзистор VT4 с допустимым током стока не менее lm и минимальным сопротивлением открытого канала rок.

6. Выбираем диод VD1 с допустимым прямым током не менее lm и минимальным падением напряжения Uпр при этом токе.

7. Падение напряжения на открытом транзисторе VT4

8. Длительность открытого состояния транзистора VT4

(если конструкция катушки не изменяется, L1=20 мкГн).

9. Длительность закрытого состояния транзистора VT4

10. Период повторения импульсов задающего генератора

Расчетного значения Тn добиваются подборкой номинала резистора R1. Далее, не устанавливая в преобразователь катушку L1 и оставив ее цепь разорванной, базу транзистора VT1 временно отключают от выхода ОУ и соединяют с движком переменного резистора номиналом 47 кОм, один из крайних выводов которого соединяют с выходом интегрального стабилизатора DA1, а другой - с общим проводом. Вновь введенным переменным резистором устанавливают длительность положительных импульсов на затворе VT4 равной t1. Измеряют напряжение на базе транзистора VT1 и устанавливают такое же на входе 3 ОУ DA1, подбирая номинал резистора R5. Восстановив все соединения, подстроечным резистором R14 добиваются нужного напряжения на выходе преобразователя.

Литература

  1. Днищенко В. Аппаратура пропорционального радиоуправления. - Радио. 2001, № 11, с. 24-26; № 12, с. 31-33.
  2. Днищенко В. Аппаратура пропорционального радиоуправления (возвращаясь к напечатанному). - Радио, 2002, № 6, с. 31.
  3. Щербина А. и др. Применение микросхемных стабилизаторов серий 142, К142.КР142.  - Радио. 1991, № 5, с. 68-70.

Автор: В.Днищенко, г.Самара

Смотрите другие статьи раздела Радиоуправление.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Токсичность интернета преувеличена 07.01.2026

Социальные сети нередко воспринимаются как арена постоянной агрессии, оскорблений и распространения фейковой информации. Новое исследование Стэнфордского университета показывает, что реальность значительно отличается от популярного представления: интернет гораздо менее токсичен, чем многие пользователи считают. Ученые опросили более тысячи американцев, попросив их оценить долю пользователей соцсетей, которые ведут себя агрессивно или распространяют ненависть. Оказалось, что впечатления людей сильно преувеличивают масштабы проблемы. Например, респонденты считали, что почти половина пользователей Reddit хотя бы раз оставляла оскорбительные комментарии, тогда как фактические данные платформы показывают, что таких людей не более 3%. Аналогичная ситуация наблюдается с дезинформацией. Опрос показал, что большинство участников считали почти половину аудитории Facebook распространителями фейковых новостей, однако статистика говорит об обратном: фактическая доля таких пользователей состав ...>>

Процессоры Ryzen AI 400 07.01.2026

Современные вычисления все больше ориентируются на интеграцию искусственного интеллекта и высокую производительность в компактных устройствах, таких как ноутбуки и мини-ПК. Новая линейка процессоров AMD Ryzen AI 400 демонстрирует, как разработчики объединяют мощные центральные ядра, графику и нейросетевые ускорители в одном чипе, чтобы удовлетворять растущие потребности пользователей в играх, контенте и ИИ-приложениях. AMD представила процессоры серии Gorgon Point, которые включают до 12 ядер Zen 5 и до 24 потоков вычислений. Чипы поддерживают интегрированную графику RDNA 3.5, обеспечивают максимальную тактовую частоту до 5,2 ГГц и имеют энергопотребление от 15 Вт до 54 Вт. Особое внимание уделено NPU, способному обрабатывать до 60 триллионов операций в секунду (TOPS), что делает эти процессоры эффективными для задач с искусственным интеллектом. Конструкция Ryzen AI 400 сочетает ядра Zen 5 и Zen 5c, обеспечивая высокую гибкость и производительность. Несмотря на то, что архитектур ...>>

Женщины лучше распознают признаки болезни по лицу 06.01.2026

Способность распознавать, что кто-то нездоров, часто проявляется интуитивно: бледная кожа, опущенные веки, уставшее выражение лица могут сигнализировать о недомогании. Новое исследование международной группы ученых показало, что женщины в среднем точнее мужчин улавливают такие тонкие невербальные признаки болезни, что может иметь эволюционные и социальные объяснения. В отличие от предыдущих работ, где использовались отредактированные фотографии или имитация больных лиц, ученые решили проверить, насколько люди способны распознавать естественные признаки недомогания. Такой подход позволил оценить реальную чувствительность к изменениям в лицах, возникающим при болезни. В исследовании приняли участие 280 студентов, поровну мужчин и женщин. Участникам предложили оценить 24 фотографии, на которых изображены люди как в здоровом состоянии, так и во время болезни. Это дало возможность сравнить восприятие естественных признаков недомогания в реальных лицах. Для анализа состояния каждого ...>>

Случайная новость из Архива

ДНК и преждевременное старение 09.05.2015

Все люди стареют по-разному, кто-то быстрее, кто-то медленнее, но, если брать в целом, признаки старости появляются у всех примерно в одном возрасте. За одним исключением: в том случае, если человек болен прогерией, стареть он начинает исключительно рано. У этой болезни есть два варианта, детский и взрослый, детский называется синдромом Хатчинсона-Гилфорда, взрослый - синдромом Вернера.

Дети с прогерией страдают от заболеваний, характерных для преклонного возраста: истончение и морщинистость кожи, облысение, сердечно-сосудистые болезни, нарушения жирового обмена, атеросклероз, проблемы с суставами и т. п. У них резко замедляется рост и развивается характерный внешний вид: большая голова, маленькое заострённое лицо, недоразвитая нижняя челюсть. В среднем больные детской формой прогерии живут не дольше 12-13 лет.

Люди со взрослым вариантом прогерии живут дольше, однако и у них возрастные изменения случаются намного раньше обычного - в 20 лет начинают седеть и выпадать волосы, к 30 годам развиваются катаракта, остеопороз, и другие заболевания, например, диабет, и обычно человек с синдромом Вернера не доживает до 60 лет. Известно, что, по крайней мере, в случае тяжёлой формы в клетках происходят во многом те же молекулярные изменения, что и при обычном старении, так что, если мы найдём способ тормозить прогерию, это, возможно, даст нам инструмент против старения вообще.

Секреты болезни можно было бы понять, понаблюдав за стволовыми клетками, которые получили от больных людей. Некоторое время назад исследователи из Института биологических исследований Солка смогли превратить кожные клетки детей с синдромом Хатчинсона-Гилфорда в аналог эмбриональных стволовых клеток, так называемые индуцированные плюрипотентные стволовые клетки. Далее с ними можно было ставить опыты, выясняя, что не так в стволовых процессах у больных прогерией. Но когда то же самое попытались сделать с клетками больных синдромом Вернера, ничего не вышло - их клетки оказались слишком повреждёнными болезнью, чтобы выдержать возврат в стволовое, недифференцированное состояние. Тогда Хуан Карлос Изписуа Бельмонте (Juan Carlos Izpisua Belmonte) вместе с коллегами из Китайской академии науки и Пекинского университета пошли по другому пути - они смоделировали прогерию в изначально здоровых клетках.

Известно, что синдром Вернера сопровождается мутациями в гене WRN, который задействован в процессах копирования и репарации ДНК. И вот, чтобы создать модель болезни, исследователи попросту поломали этот ген в стволовых клетках из эмбриона человека. Эмбриональные клетки по ходу развития превращаются в более специализированные разновидности, которые в дальнейшем могут дать начало той или иной ткани - например, в мезенхимальные стволовые клетки, "родоначальники" жировой ткани, хрящей и костей. В статье в Science авторы пишут, что, когда стволовые клетки с неработающим геном WRN превращались в мезенхимальные, они тут же начинали резко стареть: в их ДНК накапливалось много повреждений, они переставали делиться, и, наконец, у них сильно укорачивались теломеры. Так называют концы хромосом, которые при копировании ДНК защищают гены от повреждений, связанных с особенностями работы белковой копировальной машины. Длина теломер уменьшается с каждым делением клетки, и потому их считают чем-то вроде молекулярных часов, отмеряющих время жизни.

Однако у клеток с синдромом Вернера была ещё одна особенность, которая более всего привлекла внимание авторов работы. Известно, что ДНК в клеточном ядре находится в комплексе с белками. Некоторые из них выполняют какие-то текущие работы на тех или иных генах (например, синтезируют РНК), другие же играют структурную роль, поддерживая в упакованном состоянии довольно обширные фрагменты хромосом. Упакованная, структурированная часть ДНК называется гетерохроматином. И вот оказалось, что у больных клеток гетерохроматина очень мало - иными словами, ДНК при синдроме Вернера приходит в свободное, "растрёпанное" состояние.

То же самое можно наблюдать и при обычном старении: когда состояние хромосом сравнили у нескольких людей разного возраста, то увидели, что чем старше человек, тем хуже у него упакована ДНК в ядрах. Очевидно, при прогерии тот же процесс происходит быстрее и начинается раньше - возможно, что уже на ранних стадиях индивидуального развития. Почему неупорядоченное, неупакованное состояние хромосом может приводить к таким последствиям? Если какой-то ген находится в гетерохроматиновом виде, это значит, что он неактивен, выключен, находится в спящем состоянии. Если же упаковка слабеет, то у нас начнут включаться гены, которые должны молчать. Как раз такая ненужная активность может в совокупности приводить к старению. С другой стороны, известно, что в гетерохроматиновом, запечатанном виде находятся мобильные генетические элементы, которые прыгают в ДНК с места на место, вызывая тем самым нежелательные мутации.

Действительно ли общая распаковка и беспорядок в ДНК влечёт за собой все те изменения, характерные для стареющих клеток, и происходит ли так во всех случаях прогерии, как детской, так и взрослой, покажут дальнейшие эксперименты. Но, если всё и впрямь так, биологи смогут сосредоточиться на упаковке ДНК как потенциальной мишени для лекарств, которые помогли бы задержать старение - как преждевременное, так и обычное.

Другие интересные новости:

▪ Энергичные окна

▪ Гиперболы гиперпетли

▪ Революционный смартфон от Nokia

▪ Сервис совместных поездок на самоуправляемых транспортных средствах

▪ Изучаются штаны императора

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Инструменты и механизмы для сельского хозяйства. Подборка статей

▪ статья Над кем смеетесь? Над собой смеетесь! Крылатое выражение

▪ статья Что такое топливо? Подробный ответ

▪ статья Смородина обыкновенная. Легенды, выращивание, способы применения

▪ статья Устройство для поиска места обрыва в кабеле. Энциклопедия радиоэлектроники и электротехники

▪ статья Питание электромагнитного реле пониженным напряжением. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2026