Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Блок управления электродвигателем швейной машины. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Электродвигатели

Комментарии к статье Комментарии к статье

Бытовые швейные машины нередко электрифицируют, устанавливая коллекторный двигатель МШ-2, питаемый от сети переменного тока 220 В, 50 Гц. Управление этим двигателем с помощью штатной педали ненадежно, кроме того, ее не всегда удается приобрести. В предлагаемой конструкции применена самодельная педаль, снабженная оптическим датчиком положения, причем резкое нажатие на нее вызывает форсированный разгон двигателя. Заданная педалью частота вращения не изменяется под характерной для швейных машин переменной нагрузкой на вал двигателя. Имеется возможность ограничить максимальную частоту, причем порог ограничения можно регулировать в процессе шитья.

Схема блока управления (без силовых узлов) изображена на рис. 1. Датчиком частоты вращения вала двигателя служит оптрон с открытым оптическим каналом U1, сигналы которого усиливают и формируют транзистор VT1 и триггер Шмитта DD1.1.

Блок управления электродвигателем швейной машины
(нажмите для увеличения)

Как показано на рис. 2, на корпусе 1 электродвигателя закреплена винтом 2 небольшая плата. Установленный на ней оптрон 3 входит в специально просверленное отверстие корпуса 1. Оптическое окно оптрона должно находиться на расстоянии 1...2 мм от насаженной на вал 5 крыльчатки вентилятора 4. На обращенную к оптрону поверхность крыльчатки нанесена маска (см. рис. 2, вид А на деталь 4). Ее рисуют черной и белой красками. Можно также, зачернив поверхность, наклеить на нее полоски фольги. Корректировкой положения оптрона относительно крыльчатки и подборкой номинала резистора R3 добиваются максимального размаха импульсов на коллекторе транзистора VT1 при вращении вала двигателя.

Блок управления электродвигателем швейной машины

Всего на маске 16 светлых секторов, в результате за один оборот вала на вход одновибратора DD2.1 поступают 16 импульсов. В ответ на каждый из них одновибратор генерирует импульс фиксированной амплитуды и длительности, поэтому постоянная составляющая напряжения на выходе одновибратора пропорциональна частоте вращения. Усиленная и отфильтрованная каскадом на ОУ DA4 постоянная составляющая служит сигналом обратной связи в системе стабилизации частоты вращения. Крутизну зависимости напряжения от частоты устанавливают подстроечным резистором R12.

Конструкция педали показана на рис. 3. Ее подвижная часть 2 и неподвижное основание 1 соединены пружиной 3, противодействующей нажатию Оптрон 4 (U2 аналогичный U1, см. рис. 1) размещен на основании 1. В зависимости от расстояния от оптрона 4 до отражателя 5, установленного на подвижной части 2, изменяется количество излученного светодиодом оптрона 4 света, вернувшегося к чувствительной поверхности его фототранзистора В результате изменяется ток фототранзистора. Каскад на микросхеме DA1 преобразует ток в напряжение. Номинал резистора R7 выбран таким, что полному ходу педали соответствует изменение напряжения на выходе DA1 от 0 приблизительно до -8 В.

Блок управления электродвигателем швейной машины

ОУ DA2 - элемент сравнения и усилитель сигнала ошибки системы стабилизации. На его входы поступают сигналы, пропорциональные скорости вращения и положению педали, а выходное напряжение через диод VD5 подано на вход 3 ОУ DA3, служащего компаратором.

Вход 3 компаратора соединен с генератором пилообразного напряжения, состоящего из диодного моста VD1- VD4 и каскада на транзисторе VT2. На мост подано пониженное до 6 В сетевое напряжение. В моменты перехода сетевого напряжения через ноль, когда все диоды моста закрыты, а транзистор VT2 открыт током, текущим через резистор R6, конденсатор С1 заряжается почти до напряжения питания В остальную часть каждого полупериода мгновенное значение сетевого напряжения отличается от нуля, поэтому выпрямленное мостом положительное напряжение, поступая на базу транзистора VT2, удерживает последний в закрытом состоянии. Конденсатор С1 разряжается через резистор R10 Подборкой номинала этого резистора добиваются, чтобы напряжение на конденсаторе не опускалось ниже приблизительно 0,2 В. Иначе вал двигателя будет продолжать вращаться и при отпущенной педали.

Спады импульсов на выходе DA3 совпадают с моментами переходов сетевого напряжения через ноль, а положение фронтов на оси времени зависит от напряжения на выходе ОУ DA2. Через диод \/D6 и резистор R25 импульсы поступают на базу транзистора VT4, в коллекторной цепи которого находятся светодиод оптотиристора U3.1 и ограничительный резистор R28.

На рис. 4 показана схема силовой части блока управления, нумерация ее элементов продолжает начатую на рис. 1. Тиристор U3.2 в диагонали моста VD8 открывается в каждом полупериоде с началом светового импульса, создаваемого светодиодом U3.1. На электродвигатель М1, включенный во вторую диагональ моста VD8, поступает сетевое напряжение. Тем, что открывающий тиристор световой импульс продолжается до конца полупериода, предотвращают преждевременные (до окончания полупериода) закрывания тиристора из-за свойственных коллекторным двигателям кратковременных нарушений контакта в щеточном узле.

Блок управления электродвигателем швейной машины

Вернемся к рис. 1. Кроме узлов, рассмотренных выше, в устройстве имеется ограничитель среднего значения напряжения, подаваемого на двигатель. Ограничитель состоит из одновибратора DD2.2 и транзисторного ключа VT3. Спад каждого управляющего импульса (совпадающий по времени с нулевым мгновенным значением сетевого напряжения) запускает одновибратор DD2.2, импульсы которого открывают транзистор VT3. В результате транзистор VT4, а с ним и оптотиристор U3 не могут открыться, пока импульс одновибратора не закончится. За счет этого среднее напряжение на двигателе не может превысить значения, зависящего от положения движка переменного резистора R24.

Практика показала, что нередко при слишком низком пороге ограничения двигатель не может стартовать под нагрузкой, хотя нормально работает после предварительного разгона. В связи с этим обстоятельством предусмотрен узел принудительного отключения ограничителя, собранный на ОУ DA5. Пока напряжение на выводе 6 DA4, пропорциональное частоте вращения, по абсолютной величине меньше порога, установленного подстроечным резистором R20, напряжение на выходе DA5 - отрицательное, диод VD7 закрыт и низкий логический уровень напряжения на входе R одновибратора DD2.2 запрещает работу последнего, позволяя двигателю уверенно стартовать. С ростом частоты вращения низкий уровень на входе R DD2.2 сменяется высоким, разрешая работу одновибратора.

Блок можно питать от любого стабилизированного источника с выходными напряжениями +9 и -9 В, способного отдавать ток не менее 100 мА по цепи положительного напряжения и 30 мА - отрицательного. Переменное напряжение 6 В подают на диодный мост VD1-VD4 от отдельной вторичной обмотки сетевого трансформатора. Если такой обмотки нет, можно воспользоваться дополнительным понижающим трансформатором, дающим нужное напряжение.

В блоке использованы постоянные резисторы МЛТ, переменный R24 - СП-1; подстроечные R12, R20 - СПО-0,15. Конденсаторы С1, C3, С5 - металлопленочные, С7 - МБГЧ, оксидные С2, С4, С6 - К50-35. Транзисторы КТ502В можно заменить на КТ502А, КТ502Д, КТ502Е, КТ361Б, КТ361В, КТ361Г, а КТ503В - на КТ503А, КТ503Д, КТ503Е, КТ315Б, КТ315В, КТ315П. Вместо микросхемы К564АГ1 подойдет ее зарубежный аналог CD4098B, вместо КР140УД608 - К140УД6, К140УД7, КР140УД708. Диодный мост КЦ405Б можно заменить на КЦ402А, КЦ403А, КЦ403Б, КЦ403В, диоды КД509А - на КД503А, КД510А, КД518А.

Ненагруженный двигатель МШ-2 при номинальном питающем напряжении может развить очень высокую скорость (до 20000 мин-1). Поэтому желательно, чтобы во время налаживания блока управления двигатель был механически нагружен приводом швейной машины, работающей вхолостую (без ткани и ниток). Для швейных машин большинства типов максимальная частота вращения вала двигателя в этих условиях - приблизительно 3000 мин-1, что соответствует частоте повторения импульсов одновибратора DD2.1800 Гц.

Длительность этих импульсов должна составлять 0,8 мс. Если при максимальной частоте вращения вала двигателя входит в насыщение ОУ DA4, длительность нужно уменьшить. Ее корректируют подборкой номинала резистора R16. Длительность импульсов одновибратора DD2.2 должна с помощью переменного резистора R24 изменяться в интервале 2...6 мс.

Нажав на педаль до упора и перемещая движок подстроенного резистора R12 слева (по схеме) направо, установите его в положение, начиная с которого частота вращения вала двигателя уменьшается. Подстроенный резистор R20 регулируют по наиболее уверенному пуску двигателя под нагрузкой.

Если налаживать блок управления приходится с ненагруженным двигателем, обороты последнего можно уменьшить до необходимых 3000 с-1 с помощью переменного резистора R24, при необходимости временно изменив номиналы его и резистора R22.

Автор: Н.Шуков, г.Гомель, Беларусь

Смотрите другие статьи раздела Электродвигатели.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Ранняя Вселенная не была ледяной 28.11.2025

Понимание того, как формировались первые структуры во Вселенной, требует взгляда в эпохи, в которых не существовало ни звезд, ни галактик, ни привычных нам источников света. Научные группы по всему миру пытаются восстановить картину тех времен при помощи слабейших радиосигналов, оставшихся от водорода, который наполнял космос вскоре после Большого взрыва. Новые результаты, полученные на радиотелескопе Murchison Widefield Array в Австралии, неожиданным образом меняют представление об этих ранних этапах. Сразу после Большого взрыва, произошедшего около 13,8 миллиарда лет назад, пространство стремительно расширялось и остывало. Через несколько сотен тысяч лет образовался нейтральный водород, и началась так называемая эпоха тьмы, когда Вселенная была лишена источников излучения. Лишь значительно позже гравитация собрала газ в плотные области, где зародились первые звезды и ранние черные дыры, а их интенсивное излучение привело к реионизации водорода и окончательному появлению света. ...>>

Устройство идеальной очистки воздуха 28.11.2025

Качество воздуха в закрытых помещениях давно стало важнейшим фактором здоровья, особенно в городах, где люди проводят подавляющую часть времени внутри зданий. В последние годы исследователи уделяют все больше внимания именно тем технологиям, которые способны задерживать или разрушать вредоносные частицы до того, как они попадут в дыхательные пути человека. Одним из таких новаторских направлений стала разработка инженеров Университета Британской Колумбии в Оканагане, которые предложили принципиально иной подход к очистке воздуха в присутствии людей. По словам профессора Школы инженерии доктора Санни Ли, традиционные персонализированные вентиляционные системы действительно могут улучшать качество воздуха вокруг пользователя, однако их принцип работы имеет ряд ограничений. Человек вынужден находиться в строго определенной зоне, а одновременное использование одной системы несколькими людьми снижает эффективность. Кроме того, непрерывный поток сухого очищенного воздуха способен вызывать ...>>

Ощущение текстуры через экран гаджета 27.11.2025

Гаджеты научились передавать изображение и звук с впечатляющей реалистичностью, но тактильные ощущения по-прежнему остаются недоступными для полноценной цифровой симуляции. Именно поэтому инженеры и исследователи во всем мире стремятся создать технологии, которые позволят "почувствовать" виртуальный объект так же естественно, как и настоящий. Новая разработка специалистов Северо-Западного университета США стала одним из самых заметных шагов в этом направлении. Возглавлявшая исследование аспирантка Сильвия Тан (Sylvia Tan) подчеркивает, что прикосновение остается последним фундаментальным чувственным каналом, для которого пока нет зрелого цифрового аналога. По ее словам, если визуальные и звуковые интерфейсы давно обеспечивают высокую степень реалистичности, то осязание лишь начинает приближаться к этому уровню. В недавней публикации в журнале Science Advances Тан отмечает, что новая технология способна изменить само представление о взаимодействии человека с устройствами. Разработ ...>>

Случайная новость из Архива

Горы растут в теплом климате 14.06.2010

Почему все самые высокие горы Земли находятся вдали от полюсов, ближе к тропикам и экватору? Как утверждают геологи из университета Орхуса (Дания), проанализировавшие особенности горных хребтов в поясе от 60 градусов южной до 60 градусов северной долготы, все дело в ледовой эрозии.

Ледники, стекающие с вершины, постепенно ее истирают, а в теплом климате ледяные шапки меньше, что позволяет горам оставаться высокими.

Другие интересные новости:

▪ Технология E Ink Advanced Color ePaper

▪ Стерилизация одним уколом

▪ Гарнитура Xiaomi Mi USB Type-C с активным шумоподавлением

▪ Светодиод Seoul Semiconductor SunLike - самый безопасный

▪ Получение электричества с помощью тени

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Защита электроаппаратуры. Подборка статей

▪ статья У последней черты. Крылатое выражение

▪ статья Когда изобрели очки? Подробный ответ

▪ статья Кузнечные работы. Типовая инструкция по охране труда

▪ статья Автомат отключения телевизора. Энциклопедия радиоэлектроники и электротехники

▪ статья Индикатор перегрузки стабилизатора. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025