Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Стабилизированный регулятор мощности. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Регуляторы мощности, термометры, термостабилизаторы

Комментарии к статье Комментарии к статье

Иногда бывают ситуации, когда необходимо стабилизировать мощность в нагрузке, сопротивление которой меняется с течением времени в широких пределах. В таких случаях поможет предлагаемый регулятор мощности, который одновременно выполняет функции стабилизатора.

Большинство описанных в радиолюбительской литературе регуляторов мощности работают или с чисто активной (лампа накаливания, электроплита, электропечь), или с активно-индуктивной нагрузкой (электродвигатели). Однако эта нагрузка либо постоянная (электропечь), либо изменяется в течение относительно короткого переходного процесса и затем стремится к установившемуся значению (лампа накаливания, электродвигатель). В обоих случаях регулируют мощность таких нагрузок изменением протекающего среднего тока. Поскольку мощность нагрузки Рн, ток через нее Iн и ее сопротивление Rн связаны зависимостью Pн=Iн2·Rн. при неизменном сопротивлении регулирование мощности однозначно достигается регулированием тока.

Встречаются и такие виды нагрузок, сопротивление которых зависит от различных факторов и, следовательно, изменяется во времени по неизвестному заранее закону. Пример подобной нагрузки - электродный водонагревательный котел, в котором рабочей средой и электропроводящим телом является вода. Сопротивление воды зависит от вида и количества содержащихся в ней солей, температуры, скорости протекания через котел и других факторов. Сопротивление такой нагрузки может изменяться в десятки раз. В этом случае управление током через нагрузку не решает задачу регулирования мощности, поскольку ее сопротивление является переменной величиной. Здесь ток через нагрузку зависит не только от напряжения на ней, но и от ее сопротивления. Это не позволяет управлять мощностью обычным способом (установлением определенного значения тока). Даже стабилизация тока не будет выходом из положения.

Поскольку при напряжении на нагрузке Uн ее мощность Pн=Uн·Iн для стабилизации мощности в нагрузке следует стабилизировать произведение Uн·Iн, т. е. обеспечить его постоянство. Регулируемым параметром (независимой переменной) может быть напряжение, поскольку от его значения зависят и ток, и мощность нагрузки.

Следовательно, нужно так регулировать напряжение на нагрузке, чтобы при изменении сопротивления обеспечивалась постоянная средняя мощность в нагрузке. При этом для определения мгновенной мощности необходимо перемножать мгновенные значения напряжения и тока в нагрузке. Это вытекает из классического определения мощности в электротехнике.

Структурная схема устройства, реализующего описанный выше алгоритм управления, представлена на рис. 1.

Стабилизированный регулятор мощности

На входы умножителя подаются электрические сигналы, пропорциональные мгновенным значениям напряжения и тока в нагрузке. С выхода умножителя сигнал, пропорциональный их произведению (т. е. мощности), после его усреднения во времени поступает на первый вход дифференциального усилителя, на второй вход которого подано задающее напряжение. В дифференциальном усилителе происходит сравнение напряжений и усиление разностного сигнала (сигнала ошибки), который затем поступает на компаратор. На второй вход компаратора подаются импульсы пилообразной формы, следующие с удвоенной частотой сети. На выходе компаратора формируются прямоугольные импульсы, скважность которых определяет напряжение с выхода дифференциального усилителя. Импульсы с выхода компаратора управляют симисторным коммутатором, а тот, в свою очередь, нагрузкой. При отклонении мощности в нагрузке от значения, заданного напряжением Uзад, сигнал ошибки с выхода дифференциального усилителя будет воздействовать на компаратор так, что изменение скважности импульсов приведет к стабилизации мощности.

Рассмотрим работу стабилизированного регулятора мощности по его принципиальной схеме (рис. 2) и временным диаграммам (рис. 3).

Стабилизированный регулятор мощности
(нажмите для увеличения)

Стабилизированный регулятор мощности

На входы X и Y микросхемы DA3 (интегральный перемножитель сигналов) поступают сигналы, пропорциональные, соответственно, мгновенным значениям напряжения на нагрузке и тока через нее. Сигнал, пропорциональный мгновенному значению напряжения, снимают с движка подстроечного резистора R4. Резистор R1 - датчик тока нагрузки. Напряжение с этого резистора поступает на первичную обмотку повышающего трансформатора Т2 (коэффициент трансформации - около 40). Необходимость применения трансформатора обусловлена двумя факторами. Во-первых, он повышает напряжение, подаваемое на вход перемножителя, а во-вторых, обеспечивает гальваническую развязку. Сигналы, пропорциональные току и напряжению, - переменные, однако в их выпрямлении нет необходимости, поскольку микросхема К525ПС2 (DA3) допускает подачу на входы X и Y переменного напряжения амплитудой до 10,5 В.

Заметим, что сигналы напряжения и тока, подаваемые на перемножитель, должны быть синфазными, что достигается соответствующим подключением обмоток трансформатора Т2.

Интегральный перемножитель напряжения К525ПС2 разработан для реализации ряда типовых функциональных зависимостей (умножения, деления, возведения в квадрат, извлечения квадратного корня). Для выполнения указанных функций с аналоговыми сигналами используют экспоненциальную зависимость тока коллектора транзистора от его напряжения база-эмиттер. Погрешность умножения - не более 1%. Более подробные сведения о структуре и применении интегральных перемножителей можно найти в [1].

При включении интегрального перемножителя в соответствии с показанной на рис. 2 схемой на его выходе Z действует напряжение Uz≈0,15UxUy, где Ux, Uy - напряжения, приложенные к входам X и Y микросхемы DA3, соответственно.

Импульсы управления симистором VS1 поступают с выхода компаратора напряжения DA4. Интегральный компаратор К554САЗ, используемый в регуляторе мощности, имеет открытый коллекторный выход, рассчитанный на ток нагрузки до 50 мА. Выходной транзистор открыт (т. е. на выходе при подключенной нагрузке напряжение низкого уровня), если напряжение на инвертирующем входе (вывод 4) микросхемы DA4 больше, чем на неинвертирующем (вывод 3). При противоположном соотношении напряжений на выходе компаратора будет напряжение высокого уровня.

На компараторе DA4 происходит сравнение пилообразного напряжения (рис. 3, диаграмма 3) и напряжения, снимаемого с выхода ОУ DA5 (диаграмма 4).

Генератор пилообразного напряжения выполнен на транзисторах VT1, VT2. Он формирует импульсы частотой 100 Гц, синхронизированные напряжением сети. Напряжение с выпрямительного моста VD2 (рис. 3, диаграмма 1) поступает на базу транзистора VT1. Большую часть времени транзистор открыт, а в моменты, когда выпрямленное напряжение приближается к нулю, он закрывается. На его коллекторе формируются короткие прямоугольные импульсы (рис. 3, диаграмма 2), которые подаются на базу транзистора VT2. Пока напряжение на базе равно нулю, на коллекторе транзистора формируется нарастающее напряжение (конденсатор С6 заряжается через резистор R13). В момент появления положительного импульса на базе транзистор VT2 открывается и напряжение на его коллекторе уменьшается практически до нуля (рис. 3, диаграмма 3).

На выходе компаратора формируются прямоугольные импульсы (рис. 3, диаграмма 5). Нагрузка компаратора - резистор R16 и светодиод оптопары U1. При протекании тока через светодиод оптопары ее симистор открывается, обеспечивая открывание симистора VS1 - ток начинает протекать через нагрузку, подключенную к гнездам разъема XS1. Изменение скважности импульсов на выходе компаратора приводит к изменению напряжения и, следовательно, мощности в нагрузке. Из временных диаграмм несложно определить, что увеличение напряжения на выходе ОУ DA5 приводит к уменьшению мощности в нагрузке.

Теперь - о назначении и работе микросхемы DA5, выполняющей функции дифференциального усилителя или усилителя сигнала ошибки (см. рис. 1). Задающее напряжение Uзад снимают с движка переменного резистора R18 и подают на инвертирующий вход ОУ, на неинвертирующий вход которого поступает усредненное выходное напряжение перемножителя DA3. Усреднение выходного сигнала перемножителя обеспечивает интегрирующая цепь R20C8.

ОУ DA5 усиливает поданные на ее входы сигналы, обеспечивая равенство значений напряжения на них. Это значит, что уменьшение задающего напряжения Uзад приведет к уменьшению напряжения на выходе ОУ. Очевидно, что нижнему по схеме положению движка переменного резистора R18 будет соответствовать нулевое значение мощности в нагрузке. Конденсатор С7 обеспечивает стабильную работу ОУ при воздействии помех.

Источник питания элементов регулятора мощности выполнен на двух интегральных стабилизаторах напряжения DA1 и DA2. Использование двух разнотипных микросхем обусловлено желанием обойтись сетевым трансформатором с одной вторичной обмоткой (хотя и с отводом от середины) и одним выпрямительным мостом.

Диод VD1 исключает влияние фильтрующего конденсатора С1 на форму выпрямленного напряжения, подаваемого на вход генератора пилообразного напряжения.

Регулятор мощности собран на печатной плате из двусторонне фольгированного стеклотекстолита. Чертеж печатной платы показан на рис. 4.

Стабилизированный регулятор мощности

Стабилизированный регулятор мощности

В отверстия квадратных контактных площадок необходимо вставить отрезки луженого провода и пропаять их с обеих сторон платы. Микросхемы DA1, DA2 установлены на небольших дюралевых теплоотводах площадью по 20...30 см² каждый; симистор VS1 установлен на стандартном охладителе (литом теплоотводе из алюминиевого сплава) марки 0231. Резистор R1 выполнен из нихро-мового провода диаметром 3 мм.

На месте компаратора DA4, помимо указанного на схеме, можно также использовать К521САЗ, К521СА5, К521СА6 (последняя микросхема содержит два компаратора в одном корпусе), однако при этом придется скорректировать чертеж печатной платы. ОУ КР140УД708 заменим микросхемами К140УД7, К140УД8, К153УД2 и любыми аналогичными. Аналоговый перемножитель напряжений К525ПС2 допустимо заменить на К525ПC3 с любым буквенным индексом, но также с коррекцией печатной платы. Транзисторы VT1, VT2 - любые из серий КТ315, КТ342, КТ503, КТ630, KT3I02 или КТ3117А. Оптопару импортного производства МОC3052 можно заменить отечественной АОУ160А-АОУ160В с коррекцией печатной платы. Симистор VS1 можно применить из серий ТС112, ТС122, ТС132, ТС142 с допустимым импульсным напряжением в закрытом состоянии не менее 400 В и током в открытом состоянии, соответствующим максимальному току нагрузки. Диод КД106А (VD1) заменим любым из серий КД105, КД221, КД226.

Выпрямительный мост (VD2) - любой из серий КЦ402, КЦ405, с коррекцией печатной платы. Оксидные конденсаторы С1 - C3, С8 могут быть К50-16, К50-35, К50-24, К50-29; С4, С5, С7 - КМ-6, К10-17, К73-17; С6 - К73-17, К73-24, К76-П2 (этот конденсатор должен иметь небольшой ТКЕ). Подстроечные резисторы R4, R5, R8-R10 - СП5-2, СПЗ-19, СПЗ-38, переменный резистор R18 - СП-0,4, СПЗ-4М, СПЗ-16, СПЗ-30, остальные - МЛТ, С2-23. Трансформатор Т1 - ТПП232. Его можно заменить на любой другой, у которого вторичная обмотка с отводом от середины обеспечивает напряжение 33...40 В и рассчитана на ток не менее 150 мА. Трансформатор Т2 может быть любым другим с коэффициентом трансформации 30...50. Выключатель питания SA1 - автоматический выключатель A3161, АЕ2050 или АП50. Кроме того, он выполняет функцию предохранителя.

Налаживание регулятора мощности начинают с проверки выходного напряжения микросхемы DA1 ( + 15 В) и установки выходного напряжения микросхемы DA2 (-15 В) резистором R6. После этого производят регулировку перемножителя напряжения DA3. Для этого входы X, Y выход Z и вывод 1 отключают от других элементов. Движки подстроечных резисторов R8-R10 устанавливают в среднее положение. На вход X подают напряжение +5 В, а на вход Y- О В. Резистором R9 устанавливают выходное напряжение перемножителя О В. Затем на вход X подают напряжение О В, а на вход Y- +5 В. Резистором R8 устанавливают выходное напряжение О В. Затем на оба входа перемножителя подают напряжение + 5 В и измеряют выходное напряжение. Затем на одном из входов изменяют полярность входного сигнала (т. е. подают -5 В) и опять измеряют выходное напряжение. С помощью резистора R10 добиваются, чтобы два последних значения выходного напряжения были равны по абсолютному значению (по знаку они должны быть противоположны). При необходимости регулировку повторяют. После этого подключают входы и выход перемножителя напряжения к элементам регулятора. Движки подстроенных резисторов R4 и R5 устанавливают в среднее, а переменного резистора R18 - в нижнее по схеме положение.

К разъему XS1 подключают нагрузку и подают питание на регулятор мощности. Плавно вращая ось переменного резистора R18, убеждаются в увеличении напряжения на нагрузке. Если напряжение на нагрузке максимально при любом положении движка переменного резистора R18, причиной этого может быть неправильная фазировка обмоток трансформатора Т2, приводящая к подаче противофазных напряжений на входы X и Y микросхемы DA3 и отрицательному напряжению на ее выходе Z. В этом случае следует поменять местами выводы любой из обмоток трансформатора Т2.

Подстроечными резисторами R4 и R5 добиваются, чтобы максимальные (амплитудные) значения напряжения на входах перемножителя не превышали 10 В. Это удобно контролировать с помощью осциллографа. В крайнем случае можно воспользоваться вольтметром переменного тока. При синусоидальной форме напряжения на нагрузке (это имеет место, если симистор VS1 открывается в начале каждого полупериода, а напряжение на нагрузке при этом практически равно сетевому) эффективное напряжение на входах перемножителя не должно превышать 7 В. Регулирование мощности должно плавно осуществляться во всем интервале поворота оси переменного резистора R18. Если в верхнем по схеме положении движка переменного резистора R18 при максимальной подключенной нагрузке напряжение на ней не достигает значения сетевого, следует уменьшить сопротивление резистора R17 не более чем до 2,2 кОм или уменьшить коэффициенты передачи тока и напряжения, переместив вниз по схеме движки подстроечных резисторов R4 и R5.

Для проверки функции стабилизации мощности необходимо иметь нагрузку с изменяющимся сопротивлением (удобно использовать двухсекционный бытовой нагреватель) и лабораторный автотрансформатор соответствующей мощности. Нагрузка должна быть обязательно активной (т. е. не иметь индуктивной или емкостной составляющей).

Регулятор мощности подключают к сети через автотрансформатор и подключают к выходу регулятора одну секцию бытового нагревателя. Автотрансформатором устанавливают напряжение 220 В. Подключив параллельно нагрузке вольтметр переменного тока, измеряющий эффективные значения (квадратичный вольтметр), переменным резистором R18 устанавливают на нагрузке напряжение 150...200 В. Затем подключают еще одну секцию и вновь измеряют напряжение на разъеме XS1. Оно должно уменьшиться в 1,4 раза [2]. При другом законе изменения сопротивления нагрузки в любом случае будет выполняться равенство Uн²/Rн = const. Если же сопротивление нагрузки увеличится настолько, что для поддержания установленной мощности напряжение должно превысить свое максимальное значение, регулятор выйдет из режима стабилизации мощности.

Регулятор мощности обладает стабилизирующими свойствами не только в условиях изменения сопротивления нагрузки, но и по отношению к колебаниям сетевого напряжения. В этом можно убедиться, изменяя питающее напряжение регулятора с помощью автотрансформатора в интервале от 190 до 240 В (разумеется, при подключенной нагрузке). Напряжение на нагрузке при таком изменении питающего должно быть стабильным. Варьироваться будет лишь угол открывания симистора VS1, в чем можно убедиться с помощью осциллографа. Сигнал можно снимать либо с нагрузки, либо с выхода компаратора DA4.

Если в распоряжении радиолюбителя нет вольтметра, измеряющего действующее значение (например, прибора электромагнитной системы), то для измерения мощности используют индукционный счетчик электрической энергии: число оборотов диска счетчика должно быть постоянным при изменении сопротивления нагрузки и неизменном положении движка переменного резистора R18. Пользоваться вольтметром средневыпрямленного значения напряжения для этих целей нельзя.

Для повышения надежности рекомендуем последовательно с оптосимистором включить резистор сопротивлением около 150 Ом.

Литература

  1. Путников В. С. Интегральная электроника в измерительных устройствах. - 2-е изд., перераб. и доп. - Л.: Энергоатомиздат. Ленингр. отд-ние, 1988.
  2. Бирюков С. Амплитудное, среднее, эффективное. - Радио, 1999, №6, с. 58, 59.

Автор: А.Евсеев, г.Тула

Смотрите другие статьи раздела Регуляторы мощности, термометры, термостабилизаторы.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Генетика узоров на крыльях бабочек 07.09.2024

Бабочки давно привлекают внимание людей своими яркими и сложными узорами на крыльях. Эти удивительные образы служат не только для красоты, но и выполняют важные функции в жизни насекомых, такие как маскировка и привлечение партнеров. Недавнее открытие международной группы ученых проливает новый свет на генетические механизмы, ответственные за формирование этих узоров. До недавнего времени считалось, что ключевую роль в создании цветовых узоров на крыльях бабочек играют белки, производимые в клетках. Они обеспечивают расположение и распределение пигментов, которые и создают разнообразие цветов и оттенков. Однако новое исследование показало, что этот процесс гораздо сложнее и включает неожиданные механизмы на уровне генетики. Ученые обнаружили, что определяющим фактором в создании узоров на крыльях бабочек является не производство белков, как предполагалось ранее, а специфические молекулы РНК. Эти молекулы, производимые особым геном, играют решающую роль в контроле за формированием ...>>

Технология испарения пластика 07.09.2024

В наше время проблема пластиковых отходов стоит как никогда остро. Пластик, который окружает нас повсюду, загрязняет окружающую среду и требует решений для его эффективной переработки. Одним из таких решений стало новое открытие ученых из Калифорнийского университета в Беркли, которое обещает изменить подход к переработке пластика и приближает нас к созданию круговой экономики, где отходы становятся ценным ресурсом. Исследователи разработали инновационный химический процесс, который позволяет разлагать полиэтилен и полипропилен - главные компоненты одноразового пластика - до их исходных мономеров. Эти мономеры, в свою очередь, можно использовать для создания новых пластиков. Такой подход не только сокращает потребность в ископаемом сырье, но и открывает возможности для многократного использования материалов. Ключевым достижением стало замещение дорогих и нестабильных катализаторов, применяемых ранее, на более доступные и устойчивые. Новые катализаторы на основе натрия и вольфрама ...>>

Дружба детей из разных социальных слоев помогает снизить уровень бедности 06.09.2024

Социальные связи играют важную роль в жизни человека, влияя на его перспективы, карьеру и уровень дохода. Недавние исследования американских ученых показали, что дружба между детьми из семей с разным материальным положением может оказать значительное влияние на снижение уровня бедности. Такой неожиданный вывод подчеркивает важность социального взаимодействия между разными слоями общества и открывает новые возможности для преодоления экономического неравенства. Группа исследователей из США провела масштабное исследование, посвященное изучению дружбы между детьми из богатых и бедных семей. Результаты показали, что такие межклассовые дружеские связи, сформированные в раннем возрасте, способствуют увеличению доходов детей из малообеспеченных семей в будущем. Это происходит за счет того, что такие дружеские отношения открывают доступ к новым социальным сетям и возможностям, которые в ином случае могли бы быть недоступны. В разных странах существуют различные механизмы, которые позволя ...>>

Случайная новость из Архива

Завершено проектирование большой межпланетной станции Psyche 19.07.2020

Специалисты NASA успешно завершили этап проектирования автоматической межпланетной станции Psyche, которая будет исследовать металлический астероид Главного пояса (16) Психея, и перешли к этапу изготовления всех систем и научных приборов. Запуск станции в космос намечен на август 2022 года, а к астероиду она должна прибыть в начале 2026 года, сообщается на сайте NASA.

Целью новой межпланетной станции Psyche, разрабатываемой NASA в рамках программы Discovery, стал астероид (16) Психея, находящийся в Главном поясе астероидов. Он относится к спектральному классу М и содержит очень много металлов, таких как железо, никель, золото и платина. Это один из самых тяжелых известных на сегодня астероидов, его масса составляет примерно 2,41х10^19 килограммов, а размеры - 274х231х176 километров. Предполагается, что Психея может быть металлическим ядром протопланеты или его фрагментом, которое образовалось в результате столкновения с крупным небесным телом в ранней Солнечной системе. Детальные исследования подобных тел позволяют не только узнать больше о механизмах формирования планет и ядер, но и помочь в развитии технологий добычи полезных ископаемых в космосе.

Старт миссии намечен на август 2022 года, до астероида станция доберется при помощи холловских двигателей, использующих ксенон, электроэнергией все системы аппарата будут обеспечивать солнечные батареи. Ожидается, что Psyche прибудет к астероиду в конце января 2026 года, после чего начнет его комплексное изучение с орбиты при помощи магнитометра, мультиспектральной камеры, гамма-и нейтронного спектрометра и микроволнового инструмента для изучения гравитационного поля Психеи и ее внутренней структуры. Для передачи данных на Землю будет использоваться экспериментальная система лазерной связи DSOC (Deep Space Optical Communications). Данные, собранные станцией, помогут картографировать поверхность Психеи, исследовать ее внутреннюю структуру и состав, понять, действительно ли она является ядром протопланеты, и помочь восстановить картину ее формирования и дальнейшей эволюции.

7 июля 2020 года NASA объявило о завершении этапа проектирования станции, включавшего в себя создание чертежей всех элементов аппарата и его научных приборов, изготовление и испытание прототипов и инженерных моделей и финальную проверку проектов всех систем станции. Теперь специалисты перейдут к этапу создания научных инструментов и подсистем станции. Начало сборки и испытаний намечено на февраль 2021 года, к апрелю 2021 года все приборы должны быть доставлены в главную чистую комнату Лаборатории реактивного движения NASA, где будут вестись все работы.

Другие интересные новости:

▪ Измерение сверхмалой гравитации

▪ Ультрапортативный накопитель Samsung Portable SSD T1

▪ Эластичные провода с жидкой начинкой

▪ Космический огнетушитель

▪ Часы SmartWatch 2 от Sony

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта ВЧ усилители мощности. Подборка статей

▪ статья Как получить идеальное видео при кошмарном освещении. Искусство видео

▪ статья Как общаются пчелы? Подробный ответ

▪ статья Люцерна посевная. Легенды, выращивание, способы применения

▪ статья Сигнализатор ручного тормоза автомобиля. Энциклопедия радиоэлектроники и электротехники

▪ статья Радиоприемник УКВ с ЧМ в диапазоне частот 64...108 МГц и низковольтным питанием. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2024