Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Мощный переключатель на транзисторе МДП. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Часы, таймеры, реле, коммутаторы нагрузки

Комментарии к статье Комментарии к статье

На рис. 1 представлена схема одного из вариантов мощного электронного реле, предназначенного для коммутации тока нагрузки до 20 А при напряжении 5...20 В. Устройство собрано на базе мощного n-канального транзистора МДП APM2556NU, имеющего сопротивление канала не более 5,7 мОм при напряжении затвор-исток 10 В или не более 10 мОм при 4,5 В. Столь малое сопротивление открытого канала позволяет с помощью этого прибора коммутировать большой ток, причем установка транзистора на теплоотвод при невысокой частоте переключения (единицы - десятки килогерц) обычно не требуется. Устройство может быть использовано, например, как электронный включатель-выключатель выходного напряжения в мощном блоке питания, мощных источников света в аккумуляторных фонарях, низковольтных электродвигателей, тяговых электромагнитов и для множества других применений.

Использование в качестве основного коммутирующего элемента мощного транзистора МДП в сравнении с электромагнитным реле позволяет получить меньшее сопротивление "замкнутых контактов", отсутствие их выгорания и искровых помех, более высокое быстродействие (при электронном управлении). Кроме того, такой электронный переключатель будет иметь меньшие габариты и массу, чем электромагнитные реле на ток 10...20 А, а также значительно меньший ток, потребляемый цепями управления.

Управлять электронным переключателем можно двумя малогабаритными кнопками без фиксации, например, гер-коновыми, мембранными или резиновыми с токопроводящим покрытием.

Мощный переключатель на транзисторе МДП
Рис. 1

На рис. 2 для сравнения габаритов показаны электромагнитное реле G7L-2A-P фирмы Omron, контакты которого рассчитаны на коммутацию тока 20 А, и макет электронного реле на транзисторе МДП. Электронный узел даже при относительно просторном монтаже занимает вчетверо меньший объем (кнопки и светодиод смонтированы вне платы) и значительно легче.

Мощный переключатель на транзисторе МДП
Рис. 2

При подаче напряжения на вход устройства полевой транзистор VT2 остается закрытым, подключенная к выходу нагрузка - обесточенной, светодиод HL1 - выключенным. Чтобы подать напряжение на нагрузку, необходимо на короткое время нажать на кнопку SB1. Это приведет к открыванию транзистора VT1 и вслед за ним транзистора VT2.

О поступившем к нагрузке напряжении проинформирует включившийся светодиод HL1. Конденсаторы C3 и С4, а также С1, С2, С5, С6 устраняют возможное влияние на состояние транзисторов различных помех. Диоды VD2- VD5 предназначены для принудительного выключения устройства при снижении входного напряжения примерно до 3 В, что предохраняет полевой транзистор VT2 от перегревания.

Дело в том, что столь глубокое уменьшение напряжения затвор-исток транзистора VT2 резко увеличивает сопротивление канала и, как следствие, выделяемую в нем тепловую мощность, особенно при большом нагрузочном токе. Для того чтобы предохранить полевой транзистор от перегревания, предусмотрена цепь R5VD2-VD5, закрывающая оба транзистора.

Варистор RU1 и стабилитрон VD1 защищают сравнительно низковольтный полевой транзистор от всплесков напряжения, например, от ЭДС самоиндукции электродвигателя, подключенного к входу или выходу устройства, или, например, от случайного повреждения статическим электричеством при прикосновении к затвору транзистора VT2 отверткой (или другими металлическими предметами).

Для выключения устройства достаточно кратковременного замыкания контактов кнопки SB2. Управлять состоянием транзистора VT2 можно не только маломощными миниатюрными кнопками, но и, например, двумя оптронами или маломощными герконовыми реле. Следует отметить, что в выключенном состоянии переключатель практически не потребляет энергии.

Экспериментальный образец устройства был смонтирован на монтажной плате размерами 46x27 мм из стеклотекстолита навесным монтажом. Сильноточные цепи выполнены короткими отрезками монтажного провода сечением не менее 1,2 мм .

Транзистор APM2556NU в миниатюрном корпусе Т0252 допускает максимальное напряжение сток-исток 25 В. При токе стока 40 А и напряжении затвор-исток 10 В или 20 А при напряжении затвор-исток 4,5 В типовое значение сопротивления открытого канала не превышает 4,5 и 7,5 мОм соответственно. Максимально допустимый постоянный ток стока транзистора при температуре корпуса 25 °С - 60 А.

Транзистор следует припаять к теплоотводу с полезной площадью поверхности не менее 7 см2 на случай работы при пониженном напряжении питания с большим током нагрузки. При монтаже транзистора необходимо принимать меры по его защите от пробоя статическим электричеством.

Транзисторы APM2556NU, предназначенные для работы в понижающих импульсных стабилизаторах напряжения, сейчас широко используют в современных высокопроизводительных видеокартах и компьютерных системных платах. Заменить этот транзистор можно двумя соединенными параллельно миниатюрными, но имеющими вдвое большее сопротивление открытого канала транзисторами APM2510NU (8,5 МОм 10 В) или другими аналогичными, управляемыми низким напряжением затвор-исток. При использовании транзисторов с большим, чем у APM2556NU, сопротивлением канала для сохранения малого сопротивления переключательного элемента можно включить несколько однотипных полевых транзисторов, соединенных параллельно.

Транзистор 2SA733B заменим любым из серий 2SA733, 2SA992, SS9015, КТ3107, КТ6112. Вместо BZV55C15 подойдет стабилитрон 1 N4744A, TZMC-15, 2С215Ж, КС215ЖА, а вместо 1N4148 - диод 1 N914 (или любые из серий КД522, КД521). Светодиод - любой общего применения, желательно с повышенной светоотдачей, например, из серий КИПД40, КИПД66. Для каждого конкретного напряжения на нагрузке следует подбирать резистор R6 с тем, чтобы не превысить номинальный ток светодиода.

Оксидные конденсаторы - К50-68, К53-19 или импортные. Остальные - К10-17, К10-50. Варистор FNR-05K220 можно заменить любым маломощным на 18...22 В, например FNR-05K180.

Безошибочно собранное из исправных деталей устройство не требует налаживания.

В зависимости от конкретных особенностей применения предлагаемый для повторения коммутатор можно упростить или усовершенствовать. Например, если исключены всплески напряжения со стороны источника питания или подключенной нагрузки, можно обойтись без варистора RU1. Также можно отказаться от защитного стабилитрона VD1, если напряжение источника питания не превысит 15 В и исключены всякие прикосновения к выводу затвора транзистора VT2.

Если в цепь нагрузки ввести последовательно обмотку самодельного герконового реле, разомкнутые контакты которого подключены параллельно контактам кнопки SB2, то питание нагрузки будет автоматически отключаться при увеличении потребляемого ею тока выше заданного. Для изготовления такого реле на баллон геркона КЭМЗ надо намотать несколько витков толстого (диаметром 0,7...1,2 мм) обмоточного провода. Так, например, с катушкой из семи витков провода ПЭВ-2 0,68 реле сработает при токе около 5 А. Требуемое число витков для желаемого тока срабатывания защиты для конкретного экземпляра геркона определяют экспериментально.

Автор: А. Бутов

Смотрите другие статьи раздела Часы, таймеры, реле, коммутаторы нагрузки.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Определена масса света 09.09.2024

Вопрос о том, имеет ли свет массу, давно занимает умы ученых. Если бы оказалось, что фотон, частица света, действительно обладает ненулевой массой, это перевернуло бы наше понимание Вселенной и основополагающих законов физики. Недавнее исследование, проведенное командой ученых из Сычуаньского университета науки и техники, Китайской академии наук и Нанкинского университета, сделало значительный шаг в этом направлении, установив новый предел для возможной массы фотона. Исследование основывалось на анализе данных, собранных с помощью массива синхронизации пульсаров Паркса, а также на наблюдениях быстрых радиовсплесков - загадочных и мощных сигналов, исходящих из далеких галактик. Пульсары, являющиеся нейтронными звездами, испускающими регулярные пульсирующие лучи радиоволн, и радиовсплески, наблюдаемые в межгалактическом пространстве, предоставляют уникальные возможности для исследования природы света. Основное внимание в исследовании было уделено так называемой мере дисперсии - хар ...>>

Плазма способна изменять магнитные поля 09.09.2024

Взаимодействие плазмы с магнитными полями остается одной из ключевых загадок как в астрофизике, так и в разработке термоядерных реакторов. Плазма, состоящая из заряженных частиц, играет важную роль во многих космических и лабораторных процессах. От взаимодействия плазмы с магнитными полями зависит многое - от поведения звезд до перспектив создания устойчивой термоядерной энергии на Земле. Новое открытие ученых из Принстонской лаборатории физики плазмы в США обещает изменить наше понимание этих сложных процессов. Исследователи разработали инновационный метод, позволяющий с беспрецедентной точностью зафиксировать, как плазма взаимодействует с магнитными полями. С помощью протонной радиографии они смогли визуализировать эти взаимодействия, что ранее было недоступно. Процесс начинается с создания плазмы, которую получают, направляя мощный лазер на небольшой пластиковый диск. Одновременно создаются протоны - частицы, которые физики использовали в качестве диагностического инструмента. ...>>

Мужчины вредят природе больше женщин 08.09.2024

Вопрос о том, кто больше вредит окружающей среде - мужчины или женщины, оказался в центре внимания после публикации нового исследования шведских ученых. Результаты исследования показывают, что мужчины, по сравнению с женщинами, способствуют большему выбросу вредных веществ в атмосферу. Причем это связано не с профессиональной деятельностью или владением предприятиями, а с различиями в потребительском поведении. Исследование выявило, что мужчины тратят на 16% больше средств на товары и услуги, которые оказывают значительное негативное воздействие на окружающую среду. В первую очередь речь идет о продуктах, производство и использование которых сопровождается повышенным уровнем выбросов парниковых газов, способствующих глобальному потеплению. Хотя женщины расходуют сопоставимое количество денег, они выбирают товары и услуги, менее вредные для экологии. Наиболее заметная разница была обнаружена в расходах на автомобильное топливо. Мужчины значительно чаще покупают бензин и дизельное ...>>

Случайная новость из Архива

Биотопливо: больше и дешевле 30.08.2012

Новый процесс, разработанный учеными из Университета Иллинойса, удваивает производство альтернативных видов топлива при одновременном сокращении расходов. Данное открытие должно сделать горючее на основе бутанола более коммерчески выгодным. Ученые, наконец, нашли способ обойти проблемные места в производственной цепочке, которые ранее разочаровали промышленность и не позволили наращивать объемы производства альтернативного горючего.

Главная проблема при производстве бутанола с помощью микроорганизмов (например, Clostridium pasteurianum) состоит в том, что при определенной концентрации бутанол становится токсичным для бактерий. Это ограничивает количество топлива, которое можно изготовить в единицу времени в одном биореакторе. Соответственно, на тонну горючего требуется больше оборудования, что увеличивает стоимость конечного продукта. Вторая проблема заключается в большом расходе энергии на удаление бутанола из "супа" с ферментами в биореакторе.

Американские ученые решили обе эти проблемы. Для этого ученые использовали неионные поверхностно-активные вещества или сополимеры, которые захватывают и удерживают молекулы бутанола. Это позволяет поддерживать низкую концентрацию бутанола в биореакторе, а значит - бактерии не гибнут и продолжают производить горючее. В целом выход бутанола увеличивается на 100 и более процентов.

Но это только начало высокоэффективного процесса. Ученые также используют одно из свойств сополимера - термочувствительность. После нагрева ферментного раствора с бутанолом первый разделяется на два слоя: богатый бутанолом и насыщенный сополимером. Благодаря этому не только легко отделить горючее, но и можно использовать сополимер повторно до трех раз. При этом наблюдается 3-4-кратная экономия электроэнергии по сравнению с современными технологиями разделения.

Бутанол - очень перспективный вид топлива. Его можно производить из отходов, но при этом он содержит на 30% больше энергии, чем этанол. Кроме того, бутанол менее горюч и легко смешивается с бензином.

Другие интересные новости:

▪ Опасность исчезновения шоколада

▪ Камни, производящие кислород

▪ Мониторинг слепых зон в грузовиках Mercedes-Benz

▪ Слух с возрастом не ухудшается

▪ Карманный голографический дисплей Looking Glass Go

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Электрику. ПТЭ. Подборка статей

▪ статья Фармакология. Шпаргалка

▪ статья Кто нарисовал обнаженную версию Моны Лизы? Подробный ответ

▪ статья Киви. Легенды, выращивание, способы применения

▪ статья Лаки из смолянокислых эфиров. Простые рецепты и советы

▪ статья Автоматическое выключение сетевых адаптеров. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2024