Menu English Ukrainian Russian Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Базовый блок охраны. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Охранные устройства и сигнализация объектов

Комментарии к статье Комментарии к статье

В простейшем варианте для работы охранной сигнализации достаточно подключить блок временных интервалов (A3) к источнику питания (А1), а также установить датчики F1...F4 и кнопки управления SB1 - включение, SB2 - выключение охраны (рис. 2.2). Такое подключение в тексте называется "базовый блок".

Базовый блок охраны
Рис. 2.2. Базовый блок охранной сигнализации

Технические характеристики базового блока охраны:

  1. Предусмотрено смешанное питание. В стационарных условиях основным является сеть 220 В, но в случае ее отключения питание переходит на аккумулятор напряжением 9...13 В. Номинальное напряжение питания 12 В. Ток, потребляемый блоком охраны от аккумулятора в режиме ОХРАНА не превышает 0,15 мА Схема постоянно контролирует состояние аккумулятора и вовремя оповестит о снижении напряжения ниже 9 В.
  2. Включение и выключение режима охраны производится разными кнопками При включении блока кнопкой SB1 устройство будет ждать, пока сработает датчик F1, после чего выполняется задержка 12 с до перехода в режим ОХРАНА За это время надо покинуть помещение и закрыть дверь Выключение
    блока охраны производится кнопкой SB2.
  3. Схема предусматривает подключение датчиков по четырем независимым охранным шлейфам, при этом количество датчиков не ограничено
  4. При срабатывании датчика, установленного на входной двери (F1) в режиме ОХРАНА, блок временных интервалов обеспечивает задержку 6...7 с на включение сигнальных устройств. За этот интервал времени необходимо успеть отключить блок охраны скрытно установленной кнопкой SB2 При срабатывании других датчиков звуковой сигнал тревоги включается без задержки.
  5. Предусмотрено ограничение времени работы звукового сигнала. При самых неблагоприятных обстоятельствах (когда датчики постоянно срабатывают) су ммарное время работы сирены не превысит 16 мин. Режим ограничения можно отключить тумблером SA1.
  6. Для удобства эксплуатации блок охраны имеет звуковую и световую индикацию режимов работы схемы
  • при включении кнопкой SB1, если все охранные датчики находятся в исходном состоянии, никакой индикации быть не должно непрерывное свечение зеленого светодиода говорит о пониженном напряжении на аккумуляторе, а красного - что сработал один из охранных датчиков (F2 F4),
  • при кратковременном срабатывании датчика F1, пока идет отсчет интервала 12 с, мигает зеленый светодиод,
  • когда блок перешел в режим ОХРАНА, никакой индикации нет,
  • при срабатывании F1 и начале отсчета второго интервала (6 с) раздается тихий прерывистый звуковой сигнал и мигает зеленый светодиод.

В зависимости от назначения системы схема блока питания (А1) выбирается из вариантов, показанных на рис 2.3

В качестве охранных датчиков могут применяться герконовые контакты совместно : магнитом или кнопки (первое надежнее, так как они герметичны и не боятся атмосферных воздействий).

Для звукового сигнала тревоги (НА1) может использоваться автомобильная сирена или аналогичная пищалка. Ее включение производится одной из групп контактов реле ЗК1 (A3), что позволяет коммутировать любую нагрузку, в том числе сетевого звонка (до трех разных устройств одновременно). Если же блок охраны имеет только автономное питание, то вместо реле ЗК1 можно подключить сразу звуковую сирену.

Рассмотрим более подробно работу модулей системы охраны

Источник питания А1 в особых пояснениях не нуждается, так как собран по типовой схеме. Коммутация напряжения питания осуществляется контактами поляризованного реле К1 (А1), рис 23, которое выполняет роль триггера. Особенностью такого реле является способность поддерживать переключающие контакты в нужном положении при отсутствии напряжения на обмотке - достаточно кратковременной подачи напряжения на соответствующую обмотку, чтобы переключить группу контактов. В качестве резервного источника питания G1 могут применяться 10 аккумуляторов типа НкГц-0,5 или более мощные. Если G1 не устанавливается, то цепь контроля напряжения соединяется с "+" питания (на рис. 2.За перемычка вместо диода VD5).

Базовый блок охраны
Рис. 2.3. а) Питание схемы в стационарных условиях, б) питание схемы в автомобиле (нажмите для увеличения)

Базовый блок охраны
Рис. 2.4. Электрическая схема блоков системы охраны (нажмите для увеличения)

Для питания всех узлов схемы можно использовать и меньшее напряжение, если применять все исполнительные реле с обмоткой на соответствующее рабочее напряжение.

Блок временных интервалов A3, рис. 2.4, состоит из триггера на элементах D1.1. D1.3; генератора импульсов D3 1, D3.2; счетчика импульсов D5 селектора временных интервалов (12 и 6 с) на логических элементах микросхем D6, D3 4, D7; ограничителя времени звучания звукового сигнала на счетчике D2; триггера на элементах D4 для обеспечения режима ожидания начала отсчета первого временного интервала (12 с).

В момент подачи питания на схему импульс, сформированный цепью C3-R3, обеспечивает начальную нулевую установку счетчиков D2 и D5 (на выходе D2/7 появится лог. "1", т. е. напряжение питания). При этом на выводах микросхем будут состояния: D4/3 - "1"; D5/11 - "1"; D1/1 - "1"; D1/2 - "1" D1/3 - "0"; D6/10 - "1"; D7/9 - "0".

После срабатывания датчика F1 (лог. "0" на входах D4/13 и D1/9) на выходе D4/11 появится лог. "1" (на D4/10 - лог. "0", что разрешает работу счетчика D5). При этом работает генератор (импульсы на D3/3 с частотой примерно 500 Гц) и связанный с ним счетчик D5, до момента времени (12 с), пока на D6/10 не появится лог. "0" (на D1/3 лог. "1" - что остановит работу генератора). Схема переходит в режим ОХРАНА. Если при этом сработает датчик F1 - переключится триггер на элементах D1 1 .D1.3 (на выводе D1/4 появится лог. "1", на D1/3 - "0"), что разрешает работу генератора и счетчика D5. В этом случае если не нажать кнопку SB2, через 6 с появится звуковой сигнал тревоги.

При срабатывании любого другого датчика триггер на элементах D1.1...D1.3 также переключится, но звуковой сигнал тревоги появится без задержки и будет прерывистым, так как лог. "0" подается на вход D3/12, а на D3/11 будут импульсы.

Счетчик D2 позволяет ограничить время работы звукового оповещения. Когда на D2/7 появится лог. "0" (при включенном SA1), а на D4/10 - лог. "1" - этот уровень дает запрет на работу D5 и прохождение сигналов на выход D7/9.

Контроль за напряжением аккумулятора выполняет транзистор VT3. Он работает в режиме микротоков, за счет чего имеет большое усиление и переключается из запертого состояния в открытое при изменении напряжения в цепи контроля на 0,1 В. Подбором резистора R11 нужно добиться, чтобы при напряжении источника G1 9 В и меньше транзистор VT3 запирался (лог "1" на входе D4/6). Зеленый светодиод будет непрерывно светиться - что говорит о необходимости устранить причину снижения напряжения. Светодиод отключится при переходе схемы в режим ОХРАНА (D4/5 - лог "0") - это исключает разряд элементов питания за счет тока, протекающего через светодиод.

Сдвоенный светодиод HL1 можно заменить двумя любыми обычными, но с разным цветом свечения. Зеленый светодиод служит также для индикации режимов работы моргает). Пои этом для того чтобы снизить ток потребления схемой, напряжение на него подается короткими импульсами с выхода D7/10. Из-за инерции зрения это незаметно.

Топология печатной платы для схемы не разрабатывалась, и монтаж радиоэлементов несложно выполнить на универсальных макетных платах с контактными площадками под установку микросхем При монтаже следует учитывать, что, пока микросхемы не распаяны в схему, они боятся статического электричества.

В схеме применены неполярные конденсаторы - К10-17, электролитические типа К52-1Б или аналогичные с малыми токами утечки Резисторы подойдут любые. Диодную матрицу КДС627А можно заменить обычными импульсными диодами. Вместо сдвоенного светодиода HL1 подойдут два одинарных из серии КИПД24 (разных цветов) Микросхемы серии 561 заменяются на аналогичные из серии 564 Для соединения модулей между собой (при использовании системы для охраны помещения) удобно применять разъемы типа МРН14-1 или аналогичные. Реле ЗК1 типа РЭС48, паспорт РС4.520.202
(РС4.520 214), но подойдут и многие другие Поляризованные реле К1 блока питания типа РЭС32Б РС4 520.204, РС4 520.212 или РС4.520 220.

Соединения от датчиков F1.. F4 до схемы выполняются перевитыми между собой проводами. Кнопка SB2 устанавливается скрытно в любом удобном месте. Звуковой индикатор HF1 и светодиод HL1 желательно вынести из корпуса, что отвлечет внимание от места расположения основной конструкции в случае проникновения вора.

Налаживание блока временных интервалов начинается с установки резистором R12 порога запирания транзистора VT3 при напряжении 9 В в цепи аккумулятора (напряжение подается от регулируемого источника питания). После этого проверяется логика работы схемы в соответствии с описанием. При необходимости можно подстроить частоту тактового генератора резистором R9 для получения временных интервалов 6 и 12 с (или 8 и 16с).

Публикация: cxem.net

Смотрите другие статьи раздела Охранные устройства и сигнализация объектов.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Использование Apple Vision Pro во время операций 16.03.2024

Медицинская команда больницы Кромвеля в Лондоне впервые применила Apple Vision Pro в ходе двух операций на позвоночнике. Это событие подтверждает потенциал гарнитуры в качестве медицинского инструмента, изменяющего подход к хирургической практике. Хотя сами врачи не использовали Vision Pro, операционная медсестра работала с виртуальной реальностью, используя очки во время подготовки и выполнения процедур. Гарнитура позволила просматривать виртуальные экраны в операционной, выбирать инструменты и следить за ходом операции. Программное обеспечение, разработанное компанией eXeX, специализирующейся на создании приложений на основе искусственного интеллекта для хирургии, существенно улучшило процесс оказания медицинской помощи пациентам. Использование Apple Vision Pro открывает новые возможности для разработки приложений в сфере здравоохранения, таких как клиническое образование, планирование операций, обучение и медицинская визуализация. Внедрение Apple Vision Pro в медицинскую пр ...>>

Хранение углерода в Северное море 16.03.2024

Министр энергетики Норвегии Терье Осланд объявил о запуске проекта Longship, нацеленного на создание центрального хранилища углекислого газа в Северном море. Этот амбициозный проект оценивается в $2,6 млрд и направлен на применение технологии CCS (углеродного захвата и хранения) для смягчения воздействия климатических изменений. Норвегия уже имеет опыт в области CCS благодаря успешным проектам Sleipner и Snohvit, и сейчас стремится увеличить объем углерода, запечатываемого под морским дном. План Longship предусматривает создание мощности по захвату и хранению 1,5 млн. тонн углерода ежегодно в течение 25 лет. Несмотря на позитивные перспективы, существуют опасения по поводу долгосрочных последствий такого хранения. Однако сторонники проекта утверждают, что морское хранение углерода имеет ряд преимуществ, включая минимальное воздействие на окружающую среду. Проект Longship осуществляется при участии компаний Equinor, Shell и TotalEnergies через совместное предприятие Northern Li ...>>

Выращены мини-органы из амниотической жидкости человека 15.03.2024

Международная команда ученых под руководством профессора Фань Сюлиня из Университета Чжэцзян разработала уникальный способ выращивания мини-органов из клеток, обнаруженных в амниотической жидкости человека. Этот значительный прорыв в медицине может привести к улучшению диагностики и лечения врожденных заболеваний. Органоиды, представляющие собой трехмерные клеточные структуры, имитирующие органы в меньшем масштабе, были выращены из клеток легких, почек и тонкого кишечника, найденных в амниотической жидкости. Этот метод открывает новые возможности для изучения различных состояний плода и может стать ключом к ранней диагностике и лечению врожденных дефектов. Хотя пока не проводились попытки использования этого метода в лечении, ученые надеются, что их исследования в будущем помогут бороться с серьезными врожденными заболеваниями, которые затрагивают миллионы новорожденных ежегодно. Этот прорыв может изменить практику медицинских вмешательств, позволяя диагностировать и лечить врожд ...>>

Случайная новость из Архива

Экологичное получение редкоземельных элементов из отходов 17.02.2022

Редкоземельные элементы (РЗЭ) крайне важны для производства бытовой электроники, химической промышленности и автомобилестроения. На основе Nd, Y, Sm, Er, Eu с Fe-B получают сплавы с рекордными магнитными свойствами, поэтому их используют в двигателях для электромобилей, гибридов. Другие же необходимы для создания компонентов смартфонов, жестких дисков, плоских экранов и т. д.

Технология мгновенного джоулевого нагрева разработана несколько лет назад для получения графена из любого твердого источника углерода, а теперь применятся к трем источникам редкоземельных элементов: угольной летучей золе, остаткам бокситов и электронным отходам. Но промышленное извлечение редкоземов связано с выщелачиванием вследствие применения кислоты, что наносит вред экологии.

Группа ученых из американского Университета Райса разработала метод получения РЗЭ из отходов достаточно эффективно и с минимум кислоты. Для этого летучую золу и другие материалы в сочетании с сажей поместили в кварцевую трубку. Затем через нее пропустили электрический ток, нагрев за секунду до 3 тыс. градусов по Цельсию. Этот процесс позволил преобразовать отходы в хорошо растворимые "активированные виды РЗЭ" - небольшие шарики на главном фото. Работа ученых опубликована в журнале Science Advances.

В промышленных процессах для извлечения материалов используется 15-молярная концентрация азотной кислоты, а в методе исследователей из Университета Райса достаточно 0,1-молярной концентрации соляной кислоты.

Другие интересные новости:

▪ Робопауки для канализации

▪ Ремни безопасности с подогревом

▪ Чем пахнет трещина в пластмассе

▪ Снег для Антарктиды

▪ Робот-читатель

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Синтезаторы частоты. Подборка статей

▪ статья Винтовка. История изобретения и производства

▪ статья Как распределяются обязанности в муравьиной семье? Подробный ответ

▪ статья Глисты. Медицинская помощь

▪ статья Особенности применения люминесцентных ламп. Энциклопедия радиоэлектроники и электротехники

▪ статья Электрооборудование лифтов. Электрооборудование машинного помещения. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





All languages of this page

Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2024