Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Электронная удочка-автомат. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Дом, приусадебное хозяйство, хобби

Комментарии к статье Комментарии к статье

Даже самые робкие попытки переложить на электронную технику какие-то функции, которые человек привык считать "своими", а себя, соответственно, незаменимым, вызывают к себе настороженное отношение. Не в последнюю очередь это относится к любительскому рыболовству - одному из самых консервативных по своим формам увлечений человека.

Хотя трудно представить себе более интересное занятие для радиолюбителя-конструктора. Начиная от самой постановки возникающих здесь задач, от "алгоритмизации интуиции", до испытания придуманного. И не в виртуальном пространстве, куда нас последнее время так настоятельно зовут, а в самом что ни на есть настоящем: под голубым небом, среди лесов и лугов, с плеском воды и рыбой без штрих-кода.

Электронная удочка-автомат. Кинематическая схема удочки-автомата
Рис. 1. Кинематическая схема удочки-автомата

Кинематическая схема устройства, предназначенного для автоматической подсечки рыбы в сложных условиях лова, показана на рис.1. Здесь: 1 - корпус, в котором размещена вся электронно-механическая "начинка" автомата; 2 - плоская пружина, главный движитель автомата; б - подпружиненное коромысло с зажимом 7 лески 11, образующее со скобой 4, укрепленной на изолирующей пластине 3, контактную пару; 8 - тяга с серьгой зацепа 9; 10 - вал редуктора с резьбой МЗ на конце; 12 - струбцина крепления автомата на борту или кормовом транце лодки.

Во взведенном состоянии автомат удерживается сцепкой вала 10 редуктора с серьгой 9. Включенный двигатель способен мгновенно, за несколько оборотов ротора, разъединить эту сцепку. А вот в какой момент это произойдет - решит электроника автомата.

Алгоритм его работы прост. Первый же электрический сигнал датчика, возникающий в момент касания коромыслом 6 скобы 4, переводит автомат в активное состояние: начинается отсчет времени и счет этих пока еще неясных по происхождению касаний. Если их общее число - и помех, и поклевок - в этом активном состоянии автомата (его продолжительность задается) не достигает некоторого числа N (также задаваемого), то автомат вновь принимает исходное состояние - состояние ожидания. Если же это число достигнуто, то включается электромотор и - подсечка.

Этот алгоритм и реализуется электронной "начинкой" автомата, принципиальная схема которой приведена на рис. 2.

Здесь: SF1 - контактная пара "коромысло-скоба" - датчик системы; SF2 - контактная пара "вал редуктора-серьга" (редуктор и электродвигатель ставятся на основание-изолятор); SA1 - тумблер, контакты SA1.2 которого, размыкаясь, обесточивают силовую часть автомата при его настройке, смене наживки и т.п.; SA2 - переключатель, которым задают число "поклевок" - N О{l,2,3,4}; SA3 - переключатель длительности интервалов активного времени (в секундах) - Т О{2, 4, 8}.

Электронная удочка-автомат. Принципиальная схема автомата
Рис. 2. Принципиальная схема автомата (нажмите для увеличения)

Элементы DD1.1, DD1.2, С2, R4 составляют одновибратор, устраняющий ложный счет в DD3 - в счетчике "поклевок" - от "дребезга" контактов датчика SF1. На элементах DD2.2, DD2.3 собран генератор тактовых импульсов, следующих с частотой 1 Гц. Счетчиком DD4, суммирующим эти импульсы, задается время активного состояния автомата. Сброс счетчиков, возврат автомата в исходное состояние - состояние ожидания - осуществляется импульсами "единичной" амплитуды, формируемыми элементами DD2.1 и DD1.3. Это происходит либо по окончании активного времени (при появлении напряжения высокого уровня на движке переключателя SA3), либо в начале подсечки (при разрыве контактов SF2), либо при ручном выключении автомата тумблером SA1 - замыкании контактной пары SA1.1.

На элементах DD2.4, DD1.4 и транзисторах VT3, VT4 собран управляемый (по входу 2 элемента DD2.4) тональный генератор, который, возбуждая динамическую головку НА1, сигнализирует рыболову о переходе автомата в активное состояние.

Транзисторы VT1 и VT2 - электронный ключ управления электродвигателем M1. Дроссель L1 в LC-фильтре наматывают на кольцевом магнитопроводе (внешний диаметр - 10...12 мм) из феррита с m=1000...2000. Его обмотка содержит 50...100 витков провода ПЭВ-2 0.2...0.3.

Плоскую силовую пружину (2 на рис.1) - основной движитель автомата - изготавливают из полосы фосфористой бронзы толщиной 0,8 мм. Ее ширина - 78 и длина (без заделанных концов) - 220 мм. Создаваемое пружиной начальное усилие при подсечке - 1,3 кг, "мах" - до 750 мм.

Узел 7 - обычная клемма с отверстием для пропуска лески.

Размеры контактной скобы не критичны, важно лишь, чтобы между ее контактными площадками и концом перемещающегося между ними коромысла можно было выставить нужные зазоры: минимум - 1, максимум - 10 мм. Положение коромысла по отношению к контактам скобы можно изменять натяжением или ослаблением пружин в узлах 5. Общая механическая прочность всех этих элементов должна быть достаточно высокой, так как они "держат" рыбу. Во всяком случае 10...15-килограммовые рывки и удары они обязаны переносить без последствий. Винт-ось, на котором качается коромысло, должен оказывать ему минимальное сопротивление.

Спусковое устройство автомата и размещение его деталей в корпусе, склеенном из достаточно толстого (8... 10 .мм) листового органического стекла или ударопрочного полистирола в виде коробки с накладной крышкой, показано на рис. 3, а. Электродвигатель 1 - любой малогабаритный маломощный, например, от электрофицированной игрущки, имеющий на оси малую шестерню 7 диаметром 5...6 и длиной не менее 5 мм (по ней, вывинчиваясь из серьги, должна свободно перемещаться большая шестерня 4).

До установки электродвигателя необходимо проверить качество изоляции его роторной обмотки - сопротивление утечки должно быть не менее 1 МОм.

Подходящая большая шестерня редуктора, обеспечивающая четырех-пятикратное замедление, может найтись в той же игрушке.

Другие детали спускового устройства: 6 - вал редуктора (сталь); 2-его внутренняя опора (она крепится на "дне" корпуса); 3- мягкая плоская пружина на валу, выталкивающая его наружу; 5 - бронзовый или латунный подшипник, запрессованный в стенку корпуса.

Серьгу сцепа вала редуктора с тягой пружины можно выполнить по варианту, показанному на рис. 3, б. В этом случае в крышке корпуса должно быть сделано отверстие диаметром около 25 мм (его место на рис.1 отмечено стрелкой А), через которое, вращая большую шестерню редуктора пальцем, ввинчивают конец его вала в серьгу. Это сцепка очень высокой надежности, она не подвержена практически никаким посторонним воздействиям. По другому варианту (рис. 3, в) серьгу, резьба в которой сохранена лишь в нижней части ее эллиптического отверстия, просто набрасывают на выступающий из корпуса конец вала редуктора.

Электронная удочка-автомат. Элементы конструкции
Рис. 3. Элементы конструкции

Подсечка начинается с появления "1" - напряжения, близкого к напряжению питания - на движке переключателя SA2. Это напряжение блокирует счетный вход счетчика DD3 (по СР; сигналы с датчика SF1 уже не смогут изменить его состояние) и открывая электронный ключ, выполненный на транзисторах VT1, VT2, включает электродвигатель M1. За 8...10 оборотов его ротора узел "вал редуктора-серьга тяги" выводится из зацепления и силовая пружина, резко распрямляясь, производит подсечку. Но уже в момент разъединения этого узла (контактной пары SF2) на входе 12 элемента DD2.1 возникает "единичное" напряжение, что ведет к появлению "1" и на входе R счетчика DD3. В результате счетчик возвращается в свое исходное, "нулевое" состояние, на движке переключателя SA2 восстанавливается "0" (напряжение, близкое к потенциалу нулевой шины), транзисторы VT1, VT2 закрываются и электродвигатель, сделав лишь нужные обороты, отключается.

Перезарядку автомата производят при выключенном тумблере SA1: его закороченная в этом положении контактная пара SA1.1 "держит" электронику автомата в предстартовом состоянии.

Запаздывание автомата, т.е. время между появлением сигнала 1 на движке переключателя SA2 и собственно подсечкой, зависит от быстроходности и мощности электродвигателя (он может быть сильно форсирован), замедления редуктора, числа ниток вала, введенных в серьгу, смазки вращающихся частей и, конечно, состояния источника питания. В изготовленном экземпляре оно не превышало 0,2 с.

Чувствительность датчика SF1 - 10 г/мм (усилие - на леске, перемещение - у контактной скобы). Она зависит от мягкости пружин коромысла.

Источником питания автомата, оснащенного 4-вольтным электродвигателем (от неустановленной игрушки), может быть батарея из четырех гальванических элементов или аккумуляторов, способных при кратковременной разрядке (несколько десятых долей секунды) отдать ток 0,5...1 А. Для форсажа электродвигателя напряжение питания может быть и более высоким. Но, конечно, не выше максимально допустимого для микросхем автомата.

Описанный электронный автомат длительное время испытывался на морской экспериментальной станции Института биологии моря Дальневосточного отделения РАН (акватория островов Попова, Рейнике, Рикорда и др.). Лов велся преимущественно донной рыбы на глубинах до 20...25 метров. И хотя особенности морского лова - качка, смещение лодки под ветром, неровности дна, иные помехи - ставили перед автоматом достаточно трудные задачи, он практически ни в чем не уступал и опытным рыболовам. А нередко демонстрировал свое превосходство... Автомат к тому же отличался аккуратной, практически никогда не повреждающей жизненно важные ткани подсечкой. Это оказалось приятной неожиданностью, так как рыба ловилась и для пересадки в аквариум.

Электронная удочка-автомат. Оснастка автомата
Рис. 4. Оснастка автомата

На рисунке показана обычная оснастка автомата, близкая к принятой в Приморье: основная леска 0,7... 1 мм, поводки - 0,5...0,6 мм длиной 3...5 см, крючки одинарные №№10...12. Но грузило иное: стальной стержень диаметром 6...8 и длиной 250 мм и более. Такое грузило и такое его положение у дна позволяют сохранить натяжение лески почти неизменным и при заметном волнении. Но это - в дополнение к электронным "размышлениям" самого автомата. Ловля же рыбы "в полводы" вообще не представляла для него проблемы. О реальной чувствительности автомата можно было судить по минимальному весу пойманных экземпляров - 50...100 г. Максимальный же вес рыбы ограничивался лишь прочностью поводков.

Публикация: cxem.net

Смотрите другие статьи раздела Дом, приусадебное хозяйство, хобби.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Лабораторная модель прогнозирования землетрясений 30.11.2025

Предсказание землетрясений остается одной из самых сложных задач геофизики. Несмотря на развитие сейсмологии, ученые все еще не могут точно определить момент начала разрушительного движения разломов. Недавние эксперименты американских исследователей открывают новые горизонты: впервые удалось наблюдать микроскопические изменения в контактной зоне разломов, которые предшествуют землетрясению. Группа под руководством Сильвена Барбота обнаружила, что "реальная площадь контакта" - участки, где поверхности разлома действительно соприкасаются - изменяется за миллисекунды до высвобождения накопленной энергии. "Мы открыли окно в сердце механики землетрясений", - отмечает Барбот. Эти изменения позволяют фиксировать этапы зарождения сейсмического события еще до появления традиционных сейсмических волн. Для наблюдений ученые использовали прозрачные акриловые материалы, через которые можно было отслеживать световые изменения в зоне контакта. В ходе искусственного моделирования примерно 30% ко ...>>

Музыка как естественный анальгетик 30.11.2025

Ученые все активнее исследуют немедикаментозные способы облегчения боли. Одним из перспективных направлений становится использование музыки, которая способна воздействовать на эмоциональное состояние и когнитивное восприятие боли. Новое исследование международной группы специалистов демонстрирует, что даже кратковременное прослушивание любимых композиций может значительно снижать болевые ощущения у пациентов с острой болью в спине. В эксперименте участвовали пациенты, обратившиеся за помощью в отделение неотложной помощи с выраженной болью в спине. Им предлагалось на протяжении десяти минут слушать свои любимые музыкальные треки. Уже после этой короткой сессии врачи фиксировали заметное уменьшение интенсивности боли как в состоянии покоя, так и при движениях. Авторы исследования подчеркивают, что музыка не устраняет саму причину боли. Тем не менее, она воздействует на эмоциональный фон пациента, снижает уровень тревожности и отвлекает внимание, что в сумме приводит к субъективном ...>>

Алкоголь может привести к слобоумию 29.11.2025

Проблема влияния алкоголя на стареющий мозг давно вызывает интерес как у врачей, так и у исследователей когнитивного старения. В последние годы стало очевидно, что границы "безопасного" употребления спиртного размываются, и новое крупное исследование, проведенное международной группой ученых, вновь указывает на это. Работы Оксфордского университета, выполненные совместно с исследователями из Йельского и Кембриджского университетов, показывают: даже небольшие дозы алкоголя способны ускорять когнитивный спад. Команда проанализировала данные более чем 500 тысяч участников из британского биобанка и американской Программы миллионов ветеранов. Дополнительно был выполнен метаанализ сорока пяти исследований, в общей сложности включавших сведения о 2,4 миллиона человек. Такой масштаб позволил оценить не только прямую связь между употреблением спиртного и развитием деменции, но и влияние генетической предрасположенности. Один из наиболее тревожных результатов касается людей с повышенным ге ...>>

Случайная новость из Архива

Принята новая космическая стратегия НАТО 30.06.2019

В НАТО считают, что военные конфликты могут решаться в том числе в космосе. Альянс объявил о разработке первой космической стратегии.

НАТО впервые в истории разработала космическую стратегию. В организации полагают, что в будущем военные конфликты могут решаться в том числе в космосе - к примеру, через нападения на стратегически важные спутники или применение оружия в космосе.

Кроме того, уже в конце года НАТО может объявить космос отдельной территорией для проведения военных операций. Это обеспечит выделение дополнительных ресурсов и позволит рассматривать возможные космические атаки так же, как до сих пор рассматривались атаки на земле, в воздухе, на море и в киберпространстве. Ранее, в 2016 году, НАТО объявила киберпространство отдельной территорией для проведения операций, чтобы защищать себя от хакерских атак.

Поводом для усиленного внимания к космосу стал тот факт, что НАТО все больше зависит от техники в безвоздушном пространстве. Через спутники осуществляется коммуникация при военных операциях, они также используются для расследований и шпионажа, а также для навигационных систем. С другой стороны это означает, что нападения на спутники, принадлежащие странам-членам НАТО, могут ограничить их обороноспособность. Кроме того, атаки на спутники в случае войны могут быть использованы для парализации части общественной жизни.

Другие интересные новости:

▪ Автоматическая беспроводная сеть Wirepas Pino для Интернета вещей

▪ Модули памяти Kingston HyperX DDR4

▪ Велосипеды AMD

▪ Автономный сельскохозяйственный погрузчик Loadix

▪ Наш мозг специально стирает сны

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Строителю, домашнему мастеру. Подборка статей

▪ статья Погибоша аки обри (обры, обре). Крылатое выражение

▪ статья Почему животные не умеют разговаривать? Подробный ответ

▪ статья Менеджер по выдаче кредитов. Должностная инструкция

▪ статья Смешанные (комбинированные) кремы для обуви. Простые рецепты и советы

▪ статья Комбинированный блок питания, 220/0-12 и 0-215 вольт 0,5 ампера. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025