Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


ЭНЦИКЛОПЕДИЯ РАДИОЭЛЕКТРОНИКИ И ЭЛЕКТРОТЕХНИКИ
Бесплатная библиотека / Электрику

Светодиодный проблесковый маячок. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Светодиоды

Комментарии к статье Комментарии к статье

Проблесковые маячки применяются в электронных охранных домовых системах и на автомобилях как устройства индикации, сигнализации и предупреждения. Причем их внешний вид и "начинка" часто совсем не отличаются от проблесковых маячков (спецсигналов) аварийных и оперативных служб.

В продаже имеются классические маячки, но их внутренняя "начинка" поражает своим анахронизмом: изготовлены они на основе мощных ламп с вращающимся патроном (классика жанра) или ламп типа ИФК-120, ИФКМ-120 со стробоскопическим устройством, обеспечивающим вспышки через равные промежутки времени (импульсные маячки). А между тем на дворе XXI век, когда наблюдается триумфальное шествие очень ярких (мощных по световому потоку) светодиодов.

Одним из основополагающих моментов в пользу замены ламп накаливания и галогенных ламп светодиодами, в частности в проблесковых маячках, являются больший ресурс (срок безотказной работы) и меньшая стоимость последних.

Кристалл светодиода практически "неубиваем", поэтому ресурс прибора определяет в основном долговечность оптического элемента. Подавляющее большинство производителей применяют для его изготовления различные комбинации эпоксидных смол, разумеется, с различной степенью очистки. В частности, из-за этого светодиоды имеют ограниченный ресурс, по истечении которого они мутнеют.

Разные производители (не будем их бесплатно рекламировать) заявляют ресурс своих светодиодов от 20 до 100 тысяч (!) часов. В последнюю цифру мне слабо верится, потому что светодиод должен работать непрерывно 12 лет. За это время пожелтеет даже бумага, на которой отпечатана статья.

Однако, в любом случае, по сравнению с ресурсом традиционных ламп накаливания (менее 1000 часов) и газоразрядных ламп (до 5000 часов), светодиоды на несколько порядков долговечнее. Совершенно очевидно, что залогом большого ресурса является обеспечение благоприятного теплового режима и стабильного питания светодиодов.

Преобладание светодиодов с мощным световым потоком 20 - 100 лм (люменов) в новейших электронных устройствах промышленного изготовления, в которых они работают вместо ламп накаливания, дает основание и радиолюбителям применять такие светодиоды в своих конструкциях. Таким образом, я подвожу читателя к мысли о возможности замены в аварийных и специальных маячках различных ламп мощными светодиодами. При этом ток потребления устройством от источника питания уменьшится и будет зависеть в основном от примененного светодиода. Для использования в автомобиле (в качестве спецсигнала, аварийного светового указателя и даже "знака аварийной остановки" на дорогах) ток потребления непринципиален, поскольку аккумуляторная батарея (АКБ) автомобиля имеет достаточно большую энергоемкость (55 и более Ач и более). Если же маячок питается от автономного источника, то ток потребления установленного внутри оборудования будет иметь немаловажное значение. Кстати, и АКБ автомобиля без подзарядки может разрядиться при длительной работе маячка.

Так, например, "классический" маячок оперативных и аварийных служб (синий, красный, оранжевый - соответственно) при питании от источника постоянного напряжения 12 В потребляет ток более 2,2 А, который складывается из потребляемого электродвигателем (вращающим патрон) и самой лампой. При работе проблескового импульсного маячка ток потребления снижается до 0,9 А. Если же вместо импульсной схемы собрать светодиодную (об этом ниже), ток потребления сократится до 300 мА (зависит от мощности примененных светодиодов). Экономия в стоимости деталей также ощутима.

Приведенные выше данные установлены автором экспериментально (всего протестировано шесть различных классических проблесковых маячков).

Конечно, не изучен вопрос о силе света (или, лучше сказать, его интенсивности) от тех или иных проблесковых устройств, поскольку автор не имел и не имеет специальной аппаратуры (люксометра) для такого теста. Но в силу новаторских решений, предложенных ниже, данный вопрос становится второстепенным. Ведь даже относительно слабые световые импульсы (в частности от светодиодов), пропущенные сквозь призму неоднородного стекла колпачка маячка в ночное время более чем достаточны для того, чтобы маячок заметили за несколько сотен метров. Именно в этом смысл дальнего предупреждения, не правда, ли?

Теперь рассмотрим электрическую схему "заменителя лампы" проблескового маячка (рис. 1).

Светодиодный проблесковый маячок
Рис. 1. Принципиальная электрическая схема светодиодного маяка (нажмите для увеличения)

Эту электрическую схему мультивибратора можно с полным правом назвать простой и доступной. Устройство разработано на основе популярного интегрального таймера КР1006ВИ1, содержащего два прецизионных компаратора, обеспечивающих погрешность сравнения напряжений не хуже ±1%. Таймер неоднократно использовался радиолюбителями для построения таких популярных схем и устройств, как реле времени, мультивибраторы, преобразователи, сигнализаторы, устройства сравнения напряжения и другие.

В состав устройства, кроме интегрального таймера DA1 (многофункциональная микросхема КР1006ВИ1), входят еще времязадающий оксидный конденсатор С1, делитель напряжения R1R2. С3 выхода микросхемы DA1 (ток до 250 мА) управляющие импульсы поступают на светодиоды HL1-HL3.

Принцип работы устройства

Включение маячка осуществляется с помощью включателя SB1. Принцип работы мультивибратора подробно описан в литературе.

В первый момент на выводе 3 микросхемы DA1 высокий уровень напряжения - и светодиоды горят. Оксидный конденсатор С1 начинает заряжаться через цепь R1R2.

Спустя примерно одну секунду (время зависит от сопротивления делителя напряжения R1R2 и емкости конденсатора С1 напряжение на обкладках этого конденсатора достигает величины, необходимой для срабатывания одного из компараторов в едином корпусе микросхемы DA1. При этом напряжение на выводе 3 микросхемы DA1 устанавливается равным нулю - и светодиоды гаснут. Так продолжается циклически, пока на устройство подано напряжение питания.

Кроме указанных на схеме, в качестве HL1-HL3 рекомендую использовать мощные светодиоды HPWS-T400 или аналогичные с током потребления до 80 мА. Можно применять и только один светодиод из серий LXHL-DL-01, LXHL-FL1C, LXYL-PL-01, LXHL-ML1D, LXHL-PH01,

LXHL-MH1D производства Lumileds Lighting (все - оранжевого и краснооранжевого цвета свечения).

Напряжение питания устройства можно довести до 14,5 В, тогда его можно подключать в бортовую автомобильную сеть даже при работающем двигателе (а точнее - генераторе).

Особенности конструкции

Плата с тремя светодиодами устанавливается в корпус проблескового маячка вместо "тяжеловесной" штатной конструкции (лампы с вращающимся патроном и электродвигателем).

Для того чтобы выходной каскад обладал еще большей мощностью, потребуется установить в точку А (рис. 1) усилитель тока на транзисторе VT1 так, как это показано на рисунке 2.

Светодиодный проблесковый маячок
Рис. 2. Схема подключения дополнительного усилительного каскада (нажмите для увеличения)

После подобной доработки можно применять по три параллельно включенных светодиода типов LXHL-PL09, LXHL-LL3C (1400 мА),

UE-HR803RO (700 мА), LY-W57B (400 мА) - все оранжевого цвета. При этом общий ток потребления соответственно увеличится.

Вариант с лампой-вспышкой

У кого сохранились детали фотоаппаратов со встроенной вспышкой, тот может пойти и другим путем. Для этого старую лампу-вспышку демонтируют и подключают в схему так, как показано на рисунке 3. С помощью представленного преобразователя, подключаемого также в точку А (рис. 1), на выходе устройства с низким напряжением питания получают импульсы амплитудой 200 В. Напряжение питания в данном случае однозначно увеличивают до 12 В.

Выходное импульсное напряжение можно увеличить, включив в цепь несколько стабилитронов по примеру VТ1 (рис. 3). Это кремниевые планарные стабилитроны, предназначенные для стабилизации напряжения в цепях постоянного тока с минимальным его значением 1 мА и мощностью до 1 Вт. Вместо указанных на схеме можно применить стабилитроны КС591А.

Светодиодный проблесковый маячок
Рис. 3. Схема подключения лампы-вспышки

Элементы С1, R3 (рис.2) составляют демпфирующую RС-цепочку, гасящую высокочастотные колебания.

Теперь с появлением (в такт) импульсов в точке А (рис. 2) будет включаться лампа-вспышка ЕL1. Встроенная в корпус проблескового маячка данная конструкция позволит применять его и далее, если штатный маячок вышел из строя.

Светодиодный проблесковый маячок
Плата со светодиодами, устанавливаемая в штатный корпус проблескового маячка

К сожалению, ресурс лампы-вспышки от портативного фотоаппарата ограничен и едва ли превысит 50 часов работы в импульсном режиме.

Автор: А.Кашкаров

Смотрите другие статьи раздела Светодиоды.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Лабораторная модель прогнозирования землетрясений 30.11.2025

Предсказание землетрясений остается одной из самых сложных задач геофизики. Несмотря на развитие сейсмологии, ученые все еще не могут точно определить момент начала разрушительного движения разломов. Недавние эксперименты американских исследователей открывают новые горизонты: впервые удалось наблюдать микроскопические изменения в контактной зоне разломов, которые предшествуют землетрясению. Группа под руководством Сильвена Барбота обнаружила, что "реальная площадь контакта" - участки, где поверхности разлома действительно соприкасаются - изменяется за миллисекунды до высвобождения накопленной энергии. "Мы открыли окно в сердце механики землетрясений", - отмечает Барбот. Эти изменения позволяют фиксировать этапы зарождения сейсмического события еще до появления традиционных сейсмических волн. Для наблюдений ученые использовали прозрачные акриловые материалы, через которые можно было отслеживать световые изменения в зоне контакта. В ходе искусственного моделирования примерно 30% ко ...>>

Музыка как естественный анальгетик 30.11.2025

Ученые все активнее исследуют немедикаментозные способы облегчения боли. Одним из перспективных направлений становится использование музыки, которая способна воздействовать на эмоциональное состояние и когнитивное восприятие боли. Новое исследование международной группы специалистов демонстрирует, что даже кратковременное прослушивание любимых композиций может значительно снижать болевые ощущения у пациентов с острой болью в спине. В эксперименте участвовали пациенты, обратившиеся за помощью в отделение неотложной помощи с выраженной болью в спине. Им предлагалось на протяжении десяти минут слушать свои любимые музыкальные треки. Уже после этой короткой сессии врачи фиксировали заметное уменьшение интенсивности боли как в состоянии покоя, так и при движениях. Авторы исследования подчеркивают, что музыка не устраняет саму причину боли. Тем не менее, она воздействует на эмоциональный фон пациента, снижает уровень тревожности и отвлекает внимание, что в сумме приводит к субъективном ...>>

Алкоголь может привести к слобоумию 29.11.2025

Проблема влияния алкоголя на стареющий мозг давно вызывает интерес как у врачей, так и у исследователей когнитивного старения. В последние годы стало очевидно, что границы "безопасного" употребления спиртного размываются, и новое крупное исследование, проведенное международной группой ученых, вновь указывает на это. Работы Оксфордского университета, выполненные совместно с исследователями из Йельского и Кембриджского университетов, показывают: даже небольшие дозы алкоголя способны ускорять когнитивный спад. Команда проанализировала данные более чем 500 тысяч участников из британского биобанка и американской Программы миллионов ветеранов. Дополнительно был выполнен метаанализ сорока пяти исследований, в общей сложности включавших сведения о 2,4 миллиона человек. Такой масштаб позволил оценить не только прямую связь между употреблением спиртного и развитием деменции, но и влияние генетической предрасположенности. Один из наиболее тревожных результатов касается людей с повышенным ге ...>>

Случайная новость из Архива

Электростанция на бактериях 02.09.2000

Группа биохимиков из Мичиганского университета (США) смонтировала топливный элемент, работающий на бактериях.

Бактерии, как и другие живые клетки, разлагают глюкозу и переводят полученную при этом энергию в аденозин-трифосфат - универсальную энергетическую валюту клетки. В ходе этого процесса возникает поток электронов, приводящий в действие все системы клетки.

Биохимики внедрили в наружную мембрану бактерий молекулы, отвлекающие на себя часть потока электронов. Топливный элемент, горючим в котором служит раствор глюкозы, вырабатывает напряжение 0,6 вольта при токе до 17 миллиампер. После некоторого усовершенствования предполагается применять такие батарейки в портативных средствах связи.

Тем временем в одном из университетов Израиля разрабатывается способ отвлекать подобным же образом часть энергии от клеток человека. Тогда можно будет питать собственной электроэнергией, например, вживленный слуховой аппарат или сердечный стимулятор.

Другие интересные новости:

▪ Эксперименты с негативным временем

▪ Новый Кубик Рубика сам научит себя собирать

▪ На лифте через дорогу

▪ Вода не менее ценна, чем нефть или газ

▪ Йогурт борется с депрессией

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Энциклопедия радиоэлектроники и электротехники. Подборка статей

▪ статья Я о прошлом теперь не мечтаю. Крылатое выражение

▪ статья Что такое спора? Подробный ответ

▪ статья Скумпия. Легенды, выращивание, способы применения

▪ статья Генераторы световых импульсов. Энциклопедия радиоэлектроники и электротехники

▪ статья Реактивный воздушный шар. Физический эксперимент

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025