Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


ЭНЦИКЛОПЕДИЯ РАДИОЭЛЕКТРОНИКИ И ЭЛЕКТРОТЕХНИКИ
Бесплатная библиотека / Электрику

Электросварка. Как рассчитать радиатор. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Сварочное оборудование

Комментарии к статье Комментарии к статье

Во время работы полупроводникового прибора в его кристалле выделяется мощность, которая приводит к разогреву последнего. Если тепла выделяется больше, чем рассеивается в окружающем пространстве, то температура кристалла будет расти и может превысить максимально допустимую. При этом его структура будет необратимо разрушена.

Следовательно, надежность работы полупроводниковых приборов во многом определяется эффективностью их охлаждения. Наиболее эффективным является конвективный механизм охлаждения, при котором тепло уносит поток газообразного или жидкого теплоносителя, омывающего охлаждаемую поверхность.

Чем больше охлаждаемая поверхность, тем эффективнее охлаждение, и поэтому мощные полупроводниковые приборы нужно устанавливать на металлические радиаторы, имеющие развитую охлаждаемую поверхность. В качестве теплоносителя обычно используется окружающий воздух.

По способу перемещения теплоносителя различают:

  • естественную вентиляцию;
  • принудительную вентиляцию.

В случае естественной вентиляции перемещение теплоносителя осуществляется за счет тяги, возникающей возле нагретого радиатора. В случае принудительной вентиляции перемещение теплоносителя осуществляется с помощью вентилятора. Во втором случае можно получить большие скорости потока и, соответственно, лучшие условия охлаждения.

Тепловые расчеты можно сильно упростить, если использовать тепловую модель охлаждения  (рис. 18.26) Здесь разница между температурой кристалла TJ и температурой среды ТA вызывает тепловой поток, движущийся от кристалла к окружающей среде, через тепловые сопротивления RJC (кристалл - корпус), RCS (корпус - радиатор) и RSA (радиатор - окружающая среда).

Как рассчитать радиатор
Рис 18.26. Тепловая  модель охлаждения

Тепловое сопротивление имеет размерность °С/Вт. Суммарное максимальное тепловое сопротивление RJA на участке кристалл - окружающая среда можно найти по формуле:

где РПП - мощность, рассеиваемая на кристалле полупроводникового прибора, Вт.

Тепловое сопротивление RJC и RCS указывается в справочных данных на полупроводниковые приборы. Например, согласно справочным данным, на транзистор IRFP250N, его тепловое сопротивление на участке кристалл- радиатор равно RJC + RCS = 0,7 + 0,24 = 0,94 °С/ Вт.

Это означает, что если на кристалле выделяется мощность 10 Вт, то его температура будет на 9,4 °С больше температуры радиатора.

Тепловое сопротивление радиатора можно найти по формуле:

Предлагаемая ниже методика основана на рекомендациях по выбору алюминиевых радиаторов серии Max Clip System™ фирмы "AAVID THERMALLOY".

На рис. 18.27 приводятся графические зависимости между периметром сечения алюминиевого радиатора и его тепловым сопротивлением для естественного (красная линия) и принудительного (синяя линия) охлаждения воздушным потоком.

По умолчанию считается, что:

  • радиатор имеет длину 150 мм;
  • разница между температурой радиатора TS и температурой окружающей среды Та равна ;
  • скорость потока принудительного охлаждения равна 2 м/с.

Если условия охлаждения отличаются от принятых по умолчанию, то необходимую поправку можно внести, воспользовавшись графиками на рис. 18.28 - рис. 18.30.

Как рассчитать радиатор
Рис. 18.27. Зависимости между сечением алюминиевого радиатора и его тепловым сопротивлением

Как рассчитать радиатор
Рис. 18.28. Поправочный коэффициент на разницу температуры радиатора и окружающей среды

Как рассчитать радиатор
Рис. 18.29. Поправочный коэффициент на скорость воздушного потока

Как рассчитать радиатор
Рис. 18.30. Поправочный коэффициент на длину радиатора

Для примера рассчитаем радиатор, обеспечивающий охлаждение транзистора ЭРСТ, состоящего из 20-ти транзисторов типа IRFP250N. Расчет радиатора можно вести для одного транзистора, а затем полученный размер увеличить в 20 раз.

Так как на ключевом транзисторе рассеивается суммарная мощность 528 Вт, то на каждом транзисторе IRFP250N рассеивается мощность 528/20 = 26,4 Вт. Радиатор должен обеспечивать максимальную температуру кристалла транзистора не более +110 °С при максимальной температуре окружающей среды +40 °С.

Найдем тепловое сопротивление RJA для одного транзистора IRFP250N:

Теперь найдем тепловое сопротивление радиатора:

Зная максимальную температуру кристалла и тепловое сопротивление на участке кристалл-радиатор, определим максимальную температуру радиатора:

По графику (рис. 18.28) определим поправочный коэффициент Кт на разницу температуры радиатора и окружающей среды:

Для охлаждения радиатора используется вентилятор типа 1,25ЭВ-2,8-6-3270У4, имеющий производительность 280 м3/ч. Чтобы вычислить скорость потока, нужно разделить производительность на сечение воздуховода, продуваемого вентилятором.

Если воздуховод имеет площадь поперечного сечения:

то скорость воздушного потока будет равна:

По графику (рис. 18.29) определим поправочный коэффициент Kv на реальную скорость воздушного потока:

Допустим, что в нашем распоряжении имеется большое количество готовых радиаторов, имеющих периметр сечения 1050 мм и длину 80 мм. По графику (рис. 18.30) определим поправочный коэффициент KL на длину радиатора:

Чтобы найти общую поправку, перемножим все поправочные коэффициенты:

С учетом поправок, радиатор должен обеспечивать тепловое сопротивление:

С помощью графика (рис. 18.27) найдем, что для одного транзистора требуется радиатор с периметром сечения 200 мм. Для группы из 20-ти транзисторов IRFP250N радиатор должен иметь периметр сечения не менее 4000 мм. Так как имеющиеся в распоряжении радиаторы имеют периметр 1050 мм, то придется объединить 4 радиатора.

На диоде ЭРСТ рассеивается меньшая мощность, но из конструктивных соображений для него можно использовать аналогичный радиатор.

Зачастую производители охладителей указывают площадь поверхности радиатора, а не периметр и длину.

Чтобы из предлагаемой методики получить площадь радиатора, достаточно умножить длину радиатора на его периметр SP = 400 • 8 = 3200 см2.

Автор: Корякин-Черняк С.Л.

Смотрите другие статьи раздела Сварочное оборудование.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Ранняя Вселенная не была ледяной 28.11.2025

Понимание того, как формировались первые структуры во Вселенной, требует взгляда в эпохи, в которых не существовало ни звезд, ни галактик, ни привычных нам источников света. Научные группы по всему миру пытаются восстановить картину тех времен при помощи слабейших радиосигналов, оставшихся от водорода, который наполнял космос вскоре после Большого взрыва. Новые результаты, полученные на радиотелескопе Murchison Widefield Array в Австралии, неожиданным образом меняют представление об этих ранних этапах. Сразу после Большого взрыва, произошедшего около 13,8 миллиарда лет назад, пространство стремительно расширялось и остывало. Через несколько сотен тысяч лет образовался нейтральный водород, и началась так называемая эпоха тьмы, когда Вселенная была лишена источников излучения. Лишь значительно позже гравитация собрала газ в плотные области, где зародились первые звезды и ранние черные дыры, а их интенсивное излучение привело к реионизации водорода и окончательному появлению света. ...>>

Устройство идеальной очистки воздуха 28.11.2025

Качество воздуха в закрытых помещениях давно стало важнейшим фактором здоровья, особенно в городах, где люди проводят подавляющую часть времени внутри зданий. В последние годы исследователи уделяют все больше внимания именно тем технологиям, которые способны задерживать или разрушать вредоносные частицы до того, как они попадут в дыхательные пути человека. Одним из таких новаторских направлений стала разработка инженеров Университета Британской Колумбии в Оканагане, которые предложили принципиально иной подход к очистке воздуха в присутствии людей. По словам профессора Школы инженерии доктора Санни Ли, традиционные персонализированные вентиляционные системы действительно могут улучшать качество воздуха вокруг пользователя, однако их принцип работы имеет ряд ограничений. Человек вынужден находиться в строго определенной зоне, а одновременное использование одной системы несколькими людьми снижает эффективность. Кроме того, непрерывный поток сухого очищенного воздуха способен вызывать ...>>

Ощущение текстуры через экран гаджета 27.11.2025

Гаджеты научились передавать изображение и звук с впечатляющей реалистичностью, но тактильные ощущения по-прежнему остаются недоступными для полноценной цифровой симуляции. Именно поэтому инженеры и исследователи во всем мире стремятся создать технологии, которые позволят "почувствовать" виртуальный объект так же естественно, как и настоящий. Новая разработка специалистов Северо-Западного университета США стала одним из самых заметных шагов в этом направлении. Возглавлявшая исследование аспирантка Сильвия Тан (Sylvia Tan) подчеркивает, что прикосновение остается последним фундаментальным чувственным каналом, для которого пока нет зрелого цифрового аналога. По ее словам, если визуальные и звуковые интерфейсы давно обеспечивают высокую степень реалистичности, то осязание лишь начинает приближаться к этому уровню. В недавней публикации в журнале Science Advances Тан отмечает, что новая технология способна изменить само представление о взаимодействии человека с устройствами. Разработ ...>>

Случайная новость из Архива

Утилизация пластика терефталевой кислотой 12.04.2025

Проблема утилизации пластика остается одной из самых актуальных экологических задач. Недавно американские исследователи нашли способ быстрого и эффективного разложения пластмассы с использованием недорогого катализатора и влаги из воздуха. Этот метод позволяет расщеплять до 94% пластика всего за четыре часа, превращая его в терефталевую кислоту (ТФК) - ценный компонент для производства полиэстера.

В ходе экспериментов ученые использовали молибденовый катализатор в сочетании с активированным углем для разложения полиэтилентерефталата (ПЭТ) - наиболее распространенного вида пластика, используемого в бутылках, текстиле и упаковке. Нагревание этой смеси привело к разрыву химических связей в пластике, а воздействие воздуха способствовало образованию терефталевой кислоты и ацетальдегида - ценного промышленного вещества, которое легко выделяется из смеси.

Интересным открытием стало то, что новый метод воздействует исключительно на полиэфирные материалы. Это означает, что перед переработкой не требуется предварительная сортировка отходов. Процесс эффективно разлагает как прозрачные пластиковые бутылки, так и цветной пластик или синтетические ткани, превращая их в чистый и бесцветный ТФК, пригодный для повторного использования.

Исследователи также обнаружили, что для успешного расщепления необходим тонкий баланс влажности. Как отметил один из авторов работы, доцент кафедры химии Северо-Западного университета Йоси Кратиш, избыток воды мешал процессу, но естественное количество влаги в воздухе оказалось идеально подходящим.

Новый метод обладает значительными преимуществами: он экологичен, так как использует влагу из окружающей среды, экономически выгоден благодаря получению ценных химических соединений, а также универсален, поскольку подходит для переработки различных видов полиэфирных отходов. Разработка открывает новые возможности для эффективной утилизации пластиковых материалов и сокращения загрязнения окружающей среды.

Другие интересные новости:

▪ Этруски и их коровы

▪ Рукомойник для дальнобойщика

▪ Кора головного мозга есть и у птиц

▪ 3D-принтеры XYZprinting Nobel 1.0A и da Vinci 1.0 Pro 3-in-1

▪ Пластик, разлагающийся в морской воде

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Микрофоны, радиомикрофоны. Подборка статей

▪ статья Не мышонок, не лягушка, а неведома зверушка. Крылатое выражение

▪ статья Почему некоторые грампластинки можно слушать бесконечно? Подробный ответ

▪ статья Оператор. Должностная инструкция

▪ статья IrDA своими руками. Энциклопедия радиоэлектроники и электротехники

▪ статья Экономичный приемник прямого усиления. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:




Комментарии к статье:

Гость
А что если тепловое сопротивление Rsa отрицательным получается?

Зуфар
Здравствуйте. Большое спасибо за полезную статью. Небольшой вопрос: что означает данные на радиаторе, например 13 дюйм*градус/Ватт (у радиатора HS 107-100)? zufarakhmetvaliev@gmail.com

Sergeij
Класс!

Микола
Доступно - основы расчета и важнейшие параметры. [roll]


Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025