Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


ЭНЦИКЛОПЕДИЯ РАДИОЭЛЕКТРОНИКИ И ЭЛЕКТРОТЕХНИКИ
Бесплатная библиотека / Электрику

Электросварка. Регулировка сварочного тока в источнике для полуавтоматической сварки с тиристорным регулятором. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Сварочное оборудование

Комментарии к статье Комментарии к статье

Регулировка напряжения источниках со ступенчатой регулировкой сварочного напряжения и тока осуществляется переключением отводов сварочного трансформатора с помощью специальных перемычек или переключателей.

Как показывает практика, данный подход обычно не позволяет подобрать оптимальный режим сварки, а также не гарантирует неизменного результата при изменении параметров сварочной цепи, питающей сети или при работе с различными защитными газовыми смесями.

Увеличение количества ступеней переключения позволяет улучшить эксплуатационные свойства источника, но при этом приходится использовать сложные и громоздкие многопозиционные переключатели, сильно усложняются намоточные узлы источника. Это, с одной стороны, увеличивает его стоимость, а с другой - сильно снижает его надежность.

Достаточно давно существуют и применяются различные способы плавной регулировки сварочного напряжения и тока, использующие подвижные обмотки, магнитные шунты или магнитные усилители.

Но подобные способы не имеют принципиальных преимуществ, т. к. подразумевают:

  • более сложную и дорогую конструкцию трансформатора;
  • наличие специальных регулировочных электромагнитных или механических узлов.

К тому же такие варианты чаще подходят для источников, имеющих падающую внешнюю характеристику, и не совсем годятся, если внешняя характеристика должна быть полого падающей или жесткой. Для подобных источников долгое время не существовало достойной альтернативы источникам с контактными переключателями.

Обеспечение непрерывности сварочного тока

Шанс изменить сложившееся положение вещей и заменить контактные переключатели бесконтактными появился в 1955 году, когда был изготовлен тиристор, первый переключающий полупроводниковый прибор, имеющий мощность, достаточную для использования в сварочных источниках. Использование тиристоров позволило получить плавную регулировку напряжения и тока, а также отказаться от подвижных механических частей, что увеличило надежность сварочных источников.

Рассмотрим источник сварочного тока, имеющий плавную регулировку сварочного напряжения и тока.

Тиристор как ключевой элемент имеет два состояния:

  • открытое;
  • закрытое.

В закрытом состоянии тиристор не проводит ток, а в открытом - проводит. Так как тиристор способен проводить ток только в одном направлении, то его часто называют полупроводниковым управляемым вентилем (Silicon Controlled Rectifier, SCR).

В отличие от диода, тиристор, кроме анода и катода, имеет дополнительный управляющий электрод: пропуская через него ток, можно перевести тиристор в открытое состояние. К сожалению, для того чтобы тиристор перешел в закрытое состояние, недостаточно снять управляющий сигнал с управляющего электрода. Для этого необходимо снизить до нуля ток, протекающий через тиристор. Это делает его не полностью управляемым полупроводниковым прибором.

Однако подобное обстоятельство не сильно мешает, если тиристор используется в цепях переменного тока. В этом случае дважды в течение периода происходит обнуление и смена полярности тока. Поэтому тиристор может быть заперт естественным образом в конце каждого полупериода переменного тока.

Так как тиристор не имеет промежуточных состояний проводимости, то регулировка тока или напряжения может осуществляться только изменением времени его открытого состояния tu (рис. 18,13).

Регулировка сварочного тока в источнике для полуавтоматической сварки с тиристорным регулятором

18.13. Принцип регулирования напряжения и тока с помощью тиристора

Подобный способ регулирования имеет как свои плюсы, так и минусы. К плюсам относится то, что тиристор имеет очень высокое сопротивление в закрытом состоянии и очень низкое - в открытом. Поэтому на нем рассеивается незначительная мощность, что позволяет строить высокоэффективные тиристорные регулируемые источники.

К минусам относится то, что следствием работы тиристорного регулятора являются "выкусывание" фрагментов синусоиды и увеличение длительности пауз tn в выходном напряжении.

Использование двухполупериодного управляемого выпрямителя (рис. 18.14) обеспечивает более эффективное использование трансформатора, устраняет одностороннее подмагничивание сердечника трансформатора, а также сокращает длительность пауз tn между импульсами.

Регулировка сварочного тока в источнике для полуавтоматической сварки с тиристорным регулятором
Рис. 18.14. Регулирование напряжения и тока с помощью двухполупериодного управляемого выпрямителя

Однако даже в этом случае, особенно для минимального сварочного тока, паузы в выходном напряжении значительны. Для поддержания горения дуги в течении этих пауз приходится использовать более эффективный дроссель, чем в сварочном источнике с неуправляемым выпрямителем. И здесь мы сталкиваемся с взаимоисключающими требованиями, о которых говорилось ранее.

С одной стороны, чтобы обеспечить непрерывность сварочного тока, нужно увеличивать индуктивность дросселя. С другой стороны, чтобы получить необходимую скорость нарастания тока КЗ, индуктивность дросселя нельзя увеличивать выше некоторого значения, которое гарантированно не обеспечивает первое требование.

В предыдущей главе для удовлетворения этих требований мы использовали дополнительный источник подпиточного тока. В данном случае это решение не подходит, т. к. из-за работы управляемого выпрямителя будет нарушен баланс напряжений. Поэтому от подпиточного источника будет отбираться ток, соизмеримый по величине с основным током. Т. е. при попытке уменьшить ток с помощью управляемого выпрямителя недостающий ток будет поступать в сварочную цепь от подпиточного источника.

Указанную проблему можно решить, используя двухобмоточный дроссель L1, L2 (рис. 18.15). Индуктивности L1 и L2 связаны между собой через коэффициент трансформации дросселя

Рассмотрим подробнее принцип работы этого дросселя. Допустим, один из тиристоров управляемого моста открыт. В этом случае ток дуги I(V3), которая имитируется источником напряжения V3 с внутренним сопротивлением 0,05 Ом, протекает через обмотку дросселя L1, имеющую незначительную индуктивность 0,3 мГн (табл. 18.1).

В момент, когда напряжение V3 превысит мгновенное напряжение источника переменного напряжения VI, открытый ранее тиристор моста закроется, и ток нагрузки I(V3) начнет протекать в контуре D5, L2, L1, V3. Так как магнитосвязанные индуктивности L1 и L2 включены последовательно, то в этом случае ток нагрузки уменьшится в К = КТР + 1 раз, а индуктивность вырастет в К2 раз.

Вывод. В отличие от тока, который уменьшается линейно, индуктивность растет квадратично.

Это означает, что результирующая индуктивность дросселя сможет в течение более длительного времени поддерживать непрерывным ток нагрузки. Это подтверждается графиком тока нагрузки I(V3) (рис. 18.15). Из этого графика следует, что ток дуги непрерывен и в самом наихудшем случае (когда источник выдает минимальный сварочный ток 60 А) не опускается ниже 10 А.

Индуктивность дросселя L1 можно выбрать, используя данные табл. 18.1. В нашем случае L2 = 0,3 мГн. В свою очередь индуктивность L2 также не может иметь произвольные значения, а определяется коэффициентом трансформации, который обычно выражается только целым числом.

Регулировка сварочного тока в источнике для полуавтоматической сварки с тиристорным регулятором
Рис. 18.15. Использование двухобмоточного дросселя для поддержания непрерывного тока в паузах напряжения

Следовательно, для коэффициентов трансформации КТР = 1; 2; 3; 4; 5... вторичная обмотка дросселя будет иметь индуктивность = 0,3; 1,2;

Вывод. Чем больше коэффициент трансформации, тем выше индуктивность обмотки L2 и тем дольше дроссель сможет поддерживать ток в паузе напряжения.

Однако с ростом коэффициента трансформации растут и габаритные размеры дросселя. Поэтому необходимо в симуляторе подобрать минимально возможный коэффициент трансформации, гарантирующий, что при минимальном сварочном токе ток в паузе напряжения не упадет ниже 10 А.

В данном случае это условие удовлетворяется при КТР = 5. Из соответствующей временной диаграммы тока нагрузки I(V3) видно, что минимальное значение тока нагрузки не опускается ниже 10 А, а амплитудное достигает 132 А. Т. е. если амплитудное значение тока достигает указанного значения, то в индуктивности Lx накапливается энергия, достаточная для поддержания тока в паузе напряжения.

Если при дальнейшем увеличении тока сердечник дросселя будет насыщаться, то это не ухудшит его работы в паузе, но позволит уменьшить габаритные размеры. Использование насыщающегося дросселя также позволит стабилизировать действующий ток во вторичной (L2) обмотке дросселя на уровне IL2 = 13 А.

В противном случае этот ток был бы пропорционален току нагрузки. Максимальный действующий ток первичной (L1) обмотки дросселя соответствует максимальному сварочному току IL1 =  Iсв max = 180 А.

Дроссель наматывается на Ш-образном ленточном сердечнике из стали 3411 (Э310). Первичная обмотка дросселя содержит 18 витков изолированной медной шины сечением 36 мм2. Вторичная обмотка дросселя содержит 90 витков медного провода в эмалевой изоляции диаметром 1,81 мм. В зазоры сердечника дросселя необходимо вставить немагнитные прокладки толщиной 1 мм (суммарный немагнитный зазор 2 мм).

Регулировка сварочного тока в источнике для полуавтоматической сварки с тиристорным регулятором

Puc. 18.16. Временные диаграммы тока в обмотках двухобмоточного дросселя

Регулировка сварочного тока в источнике для полуавтоматической сварки с тиристорным регулятором
Рис. 18.17. Модель источника, предназначенная для снятия траектории перемагничивания нелинейного дросселя

Воспользовавшись тем, что SwCad может моделировать нелинейные индуктивности, создадим модель источника с нелинейным дросселем (рис. 18.17). Согласно результатам расчета, строка настройки нелинейной индуктивности выглядит следующим образом:

Тестовый узел снятия петли перемагничивания построен на двух источниках тока - G1 и G2, управляемых напряжением, которые используются для измерения и нормирования отображаемых параметров.

Коэффициент передачи управляемого источника тока G1, обеспечивающий выходное напряжение интегратора, равное индукции, можно вычислить по формуле:

Вычисленное значение коэффициента передачи необходимо записать в строке Value меню настройки управляемого источника тока G1.

Коэффициент передачи управляемого источника тока G2, обеспечивающий выходной ток, равный напряженности в сердечнике нелинейного трансформатора, можно вычислить по формуле:

Вычисленное значение коэффициента передачи необходимо записать, в строке Value меню настройки управляемого источника тока G2.

В настройках горизонтальной оси, в строчке Quantity Plotted, вместо параметра time, впишем параметр I(G2). По вертикали выводим напряжение на выходе интегратора, кликнув по правому выводу конденсатора С1 (рис. 18.18).

Регулировка сварочного тока в источнике для полуавтоматической сварки с тиристорным регулятором
Рис. 18.18. Траектории перемагничивания сердечника дросселя для минимального (а) и максимального (б) сварочного тока

На рис. 18.18 показаны траектории перемагничивания сердечника нелинейного дросселя. При минимальном сварочном токе (рис. 18.18, а) сердечник дросселя находится на грани насыщения. При увеличении тока сердечник насыщается (рис. 18.18, б).

Автор: Корякин-Черняк С.Л.

Смотрите другие статьи раздела Сварочное оборудование.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Открыт обращаемый драйвер старения 04.10.2025

Недавняя работа ученых из Сямэньского университета в Китае показала, что в гипоталамусе, главном регуляторе внутренних функций организма, кроется один из ключей к продлению молодости. Команда под руководством Лиге Ленга обнаружила, что снижение уровня белка менина в гипоталамусе связано с ускорением процессов старения. Менин, как выяснилось, играет важную роль в предотвращении воспаления и поддержании нормальной работы нейронов. Когда его уровень снижается, в мозге возрастает активность воспалительных сигналов, что запускает цепную реакцию возрастных изменений во всем организме - от ослабления когнитивных функций до потери плотности костей и истончения кожи. Чтобы понять, как именно менин влияет на старение, ученые вывели генномодифицированных мышей, у которых этот белок можно было выборочно отключить. Даже у молодых животных такое вмешательство быстро привело к ухудшению памяти, снижению прочности костей и эластичности кожи, а также к укорочению жизни. Эти результаты убедительно ...>>

Твердотельные батареи Panasonic 04.10.2025

Твердотельные аккумуляторы считаются следующим шагом в эволюции энергосистем: в отличие от традиционных литиево-ионных, они не содержат жидкого электролита, что существенно снижает риск возгорания и утечки. Именно на это делает ставку Panasonic, намереваясь завершить подготовку первых образцов к марту 2027 года, то есть к концу 2027 финансового года. Как сообщил технический директор подразделения Panasonic Energy Сеичиро Ватанабе, после выпуска опытных моделей клиенты проведут тесты, которые могут занять около двух лет, прежде чем начнется полноценное серийное производство. Хотя основным направлением для компании по-прежнему остаются литиево-ионные аккумуляторы, Panasonic стремится использовать свой опыт в сфере электромобильных технологий, чтобы выйти на новые рынки - прежде всего в области роботов и промышленных систем. На этом направлении японская корпорация намерена соперничать с такими компаниями, как TDK, уже закрепившимися в сегменте твердотельных решений. Интерес к новой ...>>

Кислотность океана разрушает зубы акул 03.10.2025

Мировые океаны выполняют важнейшую функцию - они поглощают около трети углекислого газа, выбрасываемого в атмосферу. Это помогает замедлять темпы глобального потепления, но имеет и обратную сторону. Растворяясь в воде, CO2 образует угольную кислоту, которая повышает концентрацию водородных ионов и приводит к снижению pH. Вода становится более кислой, а последствия этого процесса уже заметны для морских экосистем. Средний показатель кислотности океана сейчас равен примерно 8,1, тогда как еще недавно за условную норму брали значение 8,2. По прогнозам, к 2300 году уровень может упасть до 7,3 - это сделает океан почти в десять раз кислее нынешнего состояния. Для обитателей морей подобные изменения означают не просто сдвиг химического равновесия, а реальную угрозу физиологическим процессам, начиная от формирования раковин у моллюсков и заканчивая охотничьим поведением акул. Чтобы выяснить, как именно кислотная среда отражается на зубах акул, группа немецких исследователей провела эксп ...>>

Случайная новость из Архива

Космические ракеты на сточных водах 29.03.2022

Испанские ученые хотят преобразовывать сточные воды астронавтов на Марсе в ракетное топливо с использованием энергии Солнца.

Если люди хотят выжить на Марсе, им нужно будет использовать все доступные ресурсы, включая сточные воды астронавтов. Ученые придумали технологию, которая использует солнечный свет для производства ракетного топлива из этих отходов.

Созданием нового технологического процесса производства топлива на Марсе занимается испанская технологическая компания Tekniker.

"Мы хотим создать первый реактор для производства космического топлива на Марсе, используя воздух планеты, который на 95% состоит из углекислого газа. Реактор будет питаться от солнечного света, а сточные воды астронавтов будут использоваться для производства ракетного топлива", - говорит специалист Борха Позо из компании Tekniker.

С помощью новой технологии можно также будет очищать воду, и астронавты смогут ее повторно использовать. Данный проект напоминает сюжет фантастического фильма "Марсианине", в котором герой Мэтта Дэймона выжил на Марсе благодаря тому, что использовал продукты своей жизнедеятельности для удобрения почвы. Благодаря этому он смог выращивать овощи.

"Фотоэлектрохимическая" система на Марсе будет опираться на высокоэффективные каталитические материалы для производства углеводородов, таких как метан, а также монооксид углерода или спирты из углекислого газа и сточных вод.

"Во время путешествий на Марс очень много веществ будут дефицитным продуктом. Поэтому CO2 является ценным ресурсом для производства химикатов и топлива", - говорит Позо.

Будет интересно сочетать очистку сточных вод с производством топлива из CO2.

Другие интересные новости:

▪ Сетевой адаптер Mellanox Innova IPsec 40GbE с шифрованием данных

▪ Искусственный интеллект имитирует почерк человека

▪ Новые тихие рабочие станции Fujitsu Celsius

▪ Мягкий робот для океана

▪ DPP-3 - трехфазные источники питания TDK-Lambda на DIN-рейку

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Блоки питания. Подборка статей

▪ статья Закон сохранения энергии. История и суть научного открытия

▪ статья Какое особое значение имеет имя Марианна для французов? Подробный ответ

▪ статья Воспитатель группы продленного дня. Должностная инструкция

▪ статья Автомат переключения видеокамер переднего и заднего вида. Энциклопедия радиоэлектроники и электротехники

▪ статья QRPP трансивер на 28 МГц. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:




Комментарии к статье:

Виктор
Интересно для конструкторов сварочной техники. Мне бы хотелось конечный результат. Готовая схема пригодная для качественной регулировки напряжения сварочного полуавтомата. Проверенная, а не от балды.


Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025