![]() |
ЭНЦИКЛОПЕДИЯ РАДИОЭЛЕКТРОНИКИ И ЭЛЕКТРОТЕХНИКИ
ЭПРА с питанием от низковольтных источников. Электронный балласт на микросхеме КР1211ЕУ1. Энциклопедия радиоэлектроники и электротехники Энциклопедия радиоэлектроники и электротехники / Пускорегулирующие аппараты люминесцентных ламп Данный вариант устройства питания от низковольтного источника - это электронный балласт, реализованный на специализированной микросхеме КР1211ЕУ1. Микросхема КР1211ЕУ1 представляет собой специализированный контроллер электронных пускорегулирующих аппаратов (ЭПРА) для компактных люминесцентных ламп с питанием от бортовой сети постоянного тока 3-24 В. Производится по КМОП технологии. В табл. 3.12 приведены отличительные характеристики микросхем в разных корпусах. Цоколевка корпусов и назначение выводов показаны на рис. 3.56.
Таблица 3.12. Отличия микросхем с разной маркировкой Максимальные значения параметров и режимов:
Электрические характеристики:
Описание работы. Структурная схема микросхемы 1211ЕУ1/А приведена на рис. 3.57.
Основная особенность микросхемы КР(КФ)1211ЕУ1- наличие двух достаточно мощных каналов управления ключами, работающих в противофазе с обязательной паузой между выходными импульсами. Импульс во втором канале появляется через некоторое время после окончания импульса в первом, и наоборот; в западной терминологии эта пауза носит название Dead time - время простоя. Благодаря этому микросхема хорошо подходит для построения несложных, легко повторяемых импульсных преобразователей напряжения. Микросхема состоит из:
Управление микросхемой производится через выводы IN, FC, FV. С выводами управления микросхемой связаны встроенные пороговые устройства. Вывод IN переключает делитель частоты и сбрасывает RS-триггер блокировки формирователя импульсов и выходных усилителей. При подаче на вывод IN напряжения низкого уровня выбирается коэффициент деления К1 и сбрасывается RS-триггер, при подаче высокого уровня выбирается коэффициент деления К2. Выводы FC и FV служат для построения схем защиты. Подача на вывод FV напряжения высокого уровня вызывает выключение выходных усилителей (на выводах OUT1 и OUT2 устанавливается напряжение, равное нулю) на время, пока напряжение высокого уровня удерживается на этом выводе. Подача на вывод FC напряжения высокого уровня вызывает установку RS-триггера и выключение выходных усилителей (на выводах OUT1 и OUT2 устанавливается напряжение, равное нулю) до тех пор, пока по входу IN не будет сброшен RS-триггер. Рабочая частота задающего генератора микросхемы зависит от параметров элементов цепи R2, С1, подключаемых к выводу Т. Ток, протекающий через резистор R2, заряжает конденсатор С1. Когда напряжение на нем повышается до уровня, равного примерно 2/3 от напряжения питания, открывается шунтирующий его внутренний ключ микросхемы, в результате чего конденсатор быстро разряжается. Далее цикл повторяется. Частоту колебаний f на входе Т микросхемы можно оценить по формуле Для устойчивой работы устройства емкость конденсатора С1 должна быть не более 3000 пФ, а сопротивление резистора R2 - не менее 500 Ом. Импульсы пилообразной формы на входе Т (рис. 3.58) служат основой для формирования выходных импульсов на выходах OUT1 и OUT2. На них поочередно появляются прямоугольные импульсы, длительность которых зависит от уровня напряжения на входе IN.
При низком логическом уровне она равна шести, а при высоком - восьми периодам колебаний задающего генератора. По окончании импульса формируется пауза длительностью, равной одному периоду колебаний задающего генератора, в течение которой напряжение на обоих выходах имеет низкий уровень. Затем появляется импульс в другом канале и т. д. Иными словами, частота следования импульсов на выходах микросхемы fвых связана с частотой f следующими соотношениями: при низком уровне на входе IN при высоком уровне на входе IN Здесь суммы чисел в знаменателях - периоды колебаний на выходах OUT1 и OUT2, выраженные через период колебаний на входе Т. Зависимость стабильности частоты генератора от изменения напряжения питания можно оценить по графику, приведенному на рис. 3.59. Ток, потребляемый микросхемой, увеличивается с повышением частоты генератора, как показано на рис. 3.60. Выход генератора подключен к управляемому делителю частоты, с выхода которого симметричные противофазные импульсы поступают на вход формирователя; формирователь обеспечивает паузу между ними длительностью в один период тактовой частоты, как показано на рис. 3.61. Типовая схема применения микросхемы 1211ЕУ1/А в ЭПРА для люминесцентной лампы мощностью 9-15 Вт приведена на рис. 3.62. Схема инвертора состоит из микросхемы 1211ЕУ1/А с времязадающими цепями и двухтактного трансформаторного каскада, нагрузкой которого является колебательный контур L2, С8 с люминесцентной лампой.
После включения схема производит разогрев катодов лампы напряжением с частотой на 30 % выше резонансной, а затем подает на нее высокое напряжение с частотой, равной резонансной, под действием которого лампа начинает светиться в штатном режиме.
Частота импульсов, вырабатываемых генератором, подбирается такой, чтобы при высоком уровне напряжения на входе IN (при коэффициенте деления, равном К2) частота повторения импульсов на выходе микросхемы была равна резонансной частоте колебательного контура.
При подаче напряжения питания ток, протекающий через резистор R2, начинает заряжать конденсатор С2, подключаемый к выводу IN. Постоянная времени RC-цепочки R2, С2 определяет время разогрева катодов лампы. При этом за время достижения порогового значения напряжения на входе IN производится разогрев катодов лампы частотой выше резонансной (коэффициент деления К1), а после достижения порогового значения - зажигание и свечение лампы (коэффициент деления К2). Для данной схемы резонансная частота колебательного контура равна 45 кГц, время заряда конденсатора С2 - 2 с. Элементы L1, С5 и С6 обеспечивают изменение напряжения на стоках транзисторов по синусоидальному закону. Транзисторы переключаются при нулевом напряжении на стоке, вследствие чего разогрев транзисторов уменьшается за счет снижения коммутационных потерь. Микросхема 1211ЕУ1А отличается от 1211ЕУ1 меньшими значениями обоих коэффициентов деления К1 и К2 (см. табл. 3.12) делителя частоты, что позволяет примерно вдвое уменьшить частоту задающего генератора fт. Это сделано для того, чтобы длительность паузы между выходными импульсами, равная одному периоду тактовой частоты fт, увеличилась также примерно в два раза, что позволяет эффективно использовать в качестве выходных ключей недорогие биполярные транзисторы с большим временем переключения, чем у полевых транзисторов. Кроме полевых транзисторов, указанных на схеме, можно использовать КП742, КП723, IRLR2905, STD20NE06L, SPP80N04S2L, SPP80N06S2L. В качестве повышающего трансформатора Т1 для ламп мощностью до 15 Вт используют броневые сердечники чашечного типа Б22 (где 22 - внешний диаметр чашки в миллиметрах) без зазора, марка феррита 2000НМ. Обмотка II содержит 150-170 витков ПЭЛ диаметром 0,3 мм, обмотка I - 2x18 витков ПЭЛ диаметром 0,6 мм. Для ЛЛ мощностью 18-36 Вт следует брать более мощный сердечник, Ш-образный или броневой со среднем керном сечением 0,6-1 см2. Основные геометрические параметры некоторых магнитопроводов представлены в табл. 3.13. Таблица 3.13. Основные геометрические параметры некоторых магнитопроводов Примечания к табл. 3.13: К - кольцевые магнитолроводы; Ш - Ш-образные; Б - броневые. SM, см2 - эффективное значение площади сечения магнитопровода; SO, см2 - площадь окна магнитопровода; VM = IMxSM, см3 - эффективный объем магнитопровода. Число витков первичной обмотки определяют из расчета 1-1,4 витка на 1 В напряжения питания, диаметр провода - исходя из плотности тока 3-4 А/мм2. Например, при среднем токе первичной обмотки 2 А следует использовать провод диаметром 0,8-1 мм. Аналогично рассчитывают число витков вторичной обмотки, амплитуда импульсов при этом должна быть не менее 150 В. Токоограничительный дроссель L2 аналогичен дросселям, используемым в электронных балластах на IR2153, которые были рассмотрены выше. Замечания по применению. При повышении напряжения питания увеличивается напряжение, подводимое к лампе, и мощность, рассеиваемая микросхемой. Чтобы избежать выхода из строя как лампы, так и силовых транзисторов, в схему ЭПРА вводят блокировки по превышению напряжения питания (вывод FV) и потребляемому току (вывод FC). Схема узла блокировки ЭПРА по превышению напряжения питания приведена на рис. 3.63.
Увеличение напряжения питания приводит к росту напряжения на входе FV. При превышении порога срабатывания происходит выключение выходных каскадов микросхемы (на выводах OUT1 и OUT2 устанавливается напряжение, равное нулю). Уровень срабатывания схемы защиты (максимально допустимое напряжение VP МАКС, подводимое к выходному каскаду) определяется выбором номиналов резисторов R1, R2: где 0,6VCC - порог срабатывания схемы защиты. Сопротивление резистора R1 должно быть достаточно большим, чтобы ограничить ток через внутренний защитный диод при больших бросках напряжения питания. Схема защиты выходного каскада по току приведена на рис. 3.64.
В случае выхода лампы из строя резко увеличивается ток через лампу, что приводит к увеличению падения напряжения на спирали лампы. Это напряжение выпрямляется детектором VD1, С1 и через делитель R1, R2 подается на вход FC. Для предотвращения случайного срабатывания от помех параллельно резистору R1 включен конденсатор С1. Делитель R1, R2 должен быть рассчитан так, чтобы при максимально допустимом токе через лампу напряжение на входе FC составило 0,6VCC. На рис. 3.65 представлена схема ЭПРА с защитой силовых ключей.
Эта схема аналогична схеме, показанной на рис. 3.62, но дополнена узлами защиты. Дополнительные резисторы R3, R4 и перемычки XI, Х2 позволяют уменьшать рабочую частоту задающего генератора на 5, 10 и 15 %. Элементы VD1 и R5 обеспечивают защиту от бросков напряжения питания. При увеличении напряжения питания Vp до 17 В открывается стабилитрон VD1, напряжение на входе FV составит 5 В, что соответствует порогу срабатывания схемы защиты. Напряжение на выводах OUT1, OUT2 при этом станет равным нулю, транзисторы VT1, VT2 закрываются. Резистор R6 ограничивает ток по входу FV на уровне 5 мА при бросках напряжения до 100 В. Резистор R11 является датчиком тока. Напряжение с него поступает на детектор VD3, С8 и далее на вход FC. Подбирая резистор R11, устанавливают порог IMAX срабатывания защиты по току: При необходимости это значение можно пересчитать с учетом коэффициента трансформации трансформатора Т1 в ток потребления от источника питания. Элементы R7, R8, С5 позволяют ограничить выбросы напряжения на стоках полевых транзисторов VT1, VT2 в моменты коммутации на уровне 0,2Vp. Нагрузочная характеристика микросхемы представлена на рис. 3.66.
Автор: Корякин-Черняк С.Л.
Глазные капли, возвращающие молодость зрению
05.10.2025 Цифровая рация Xiaomi Digital Walkie Talkie
05.10.2025 Открыт обращаемый драйвер старения
04.10.2025
▪ Вкус мяса и гуманное обращение со скотом ▪ Первый в мире оптический предохранитель от MOLEX ▪ 13 Мп датчик изображения OmniVision OV13850 для мобильных устройств ▪ Создание новых материалов с помощью молекулярно-лучевой технологии ▪ Бумажная тест-полоска обнаружит токсины в еде
▪ раздел сайта Аккумуляторы, зарядные устройства. Подборка статей ▪ статья Экономика предприятия. Шпаргалка ▪ статья Как определяется день празднования Пасхи? Подробный ответ ▪ статья Ледяная трава. Легенды, выращивание, способы применения
Комментарии к статье: Виктор Лаконично и понятно!Хочу применить для гальванической развязки в "трансформаторе постоянного тока" с 12 на 3,3В с двухтактным выпрямителем на синхрике. [;)] Илия Пасков, Болгария Спасибо большое за огромный труд, который положили при создании этого сайта. Он очень нужен людям, которые занимается электроникой. Спасибо! Гусаров Юрий Парни, как замечательно, когда человек трудится и правильно думает. Счастья вам и удачи в семье, а остальное приложится! дед... Александр Это специально не проставлены цены или эти микросхемы не продаются? [down] Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте www.diagram.com.ua |