www.diagram.com.ua
www.diagram.com.ua
Русский: Русская версия English: English version
Translate it!
Поиск по сайту

+ Поиск по журналам
+ Поиск по статьям сайта
+ Поиск по схемам СССР
+ Поиск по Библиотеке

Бесплатная техническая библиотека:
Все статьи А-Я
Энциклопедия радиоэлектроники и электротехники
Новости науки и техники
Архив статей и поиск
Ваши истории из жизни
На досуге
Случайные статьи
Отзывы о сайте

Справочник:
Большая энциклопедия для детей и взрослых
Биографии великих ученых
Важнейшие научные открытия
Детская научная лаборатория
Должностные инструкции
Домашняя мастерская
Жизнь замечательных физиков
Заводские технологии на дому
Загадки, ребусы, вопросы с подвохом
Инструменты и механизмы для сельского хозяйства
Искусство аудио
Искусство видео
История техники, технологии, предметов вокруг нас
И тут появился изобретатель (ТРИЗ)
Конспекты лекций, шпаргалки
Крылатые слова, фразеологизмы
Личный транспорт: наземный, водный, воздушный
Любителям путешествовать - советы туристу
Моделирование
Нормативная документация по охране труда
Опыты по физике
Опыты по химии
Основы безопасной жизнедеятельности (ОБЖД)
Основы первой медицинской помощи (ОПМП)
Охрана труда
Радиоэлектроника и электротехника
Строителю, домашнему мастеру
Типовые инструкции по охране труда (ТОИ)
Чудеса природы
Шпионские штучки
Электрик в доме
Эффектные фокусы и их разгадки

Техническая документация:
Схемы и сервис-мануалы
Книги, журналы, сборники
Справочники
Параметры радиодеталей
Прошивки
Инструкции по эксплуатации
Энциклопедия радиоэлектроники и электротехники

Бесплатный архив статей
(500000 статей в Архиве)

Алфавитный указатель статей в книгах и журналах

Бонусы:
Ваши истории
Викторина онлайн
Загадки для взрослых и детей
Знаете ли Вы, что...
Зрительные иллюзии
Веселые задачки
Каталог Вивасан
Палиндромы
Сборка кубика Рубика
Форумы
Голосования
Карта сайта

ДИАГРАММА
© 2000-2021

Дизайн и поддержка:
Александр Кузнецов

Техническое обеспечение:
Михаил Булах

Программирование:
Данил Мончукин

Маркетинг:
Татьяна Анастасьева

Перевод:
Наталья Кузнецова

Контакты

При использовании материалов сайта обязательна ссылка на https://www.diagram.com.ua

сделано в Украине
сделано в Украине

Диаграмма. Бесплатная техническая библиотека

Бесплатная техническая библиотека Бесплатная техническая библиотека, Энциклопедия радиоэлектроники и электротехники

Повышение температурной стабильности рабочей частоты трансивера RA3AO

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Гражданская радиосвязь

Комментарии к статье Комментарии к статье

В данной статье рассмотрена проблема повышения температурной стабильности рабочей частоты трансивера RA3AO путем введения в его состав схемы термокомпенсации напряжения питания варикапа узла расстройки частоты.

Повышение температурной стабильности рабочей частоты трансивера RA3AO при изменении окружающей температуры и самопрогреве аппарата в процессе работы может быть достигнуто путем термокомпенсации напряжения питания варикапа VD 1 узла расстройки частоты ГПД А5 (рис. 1 [1]).

Повышение температурной стабильности рабочей частоты трансивера RA3AO
Рис.1 (нажмите для увеличения)

Принцип предлагаемого способа термокомпенсации состоит в том, что изменением напряжения питания варикапа VD1 добиваются ухода частоты, равного по величине, но противоположного по знаку уходу частоты ГПД, вызванному изменением температуры [2,3].

Так как рабочая частота трансивера RA3AO в режимах приема и передачи определяется, кроме ГПД, кварцевыми генераторами в узлах Л4, А7, Л 19, путем термокомпенсации суммарного ухода рабочей частоты всех генераторов трансивера одним предлагаемым устройством можно добиться повышения стабильности рабочей частоты трансивера в диапазоне температур от -10°С до +50°С.

При повторении трансивера RA3AO из-за многообразия конструктивных особенностей, примененных материалов и разброса параметров комплектующих изделий величина и знак температурного ухода рабочей частоты могут иметь различные значения. В рассматриваемой ниже схеме термокомпенсации имеется возможность осуществить выбор знака и величины напряжения термокомпенсации.

Экспериментальные кривые, иллюстрирующие уходы частоты трансивера при изменении температуры внутри корпуса от времени работы, приведены на рис. 2. Здесь кривая 1 показывает уход рабочей частоты трансивера без термокомпенсации, кривая 2 -уход частоты трансивера со схемой термокомпенсации, но недостаточно отрегулированной для получения необходимой стабильности частоты трансивера. Кривая 3 иллюстрирует минимальный уход рабочей частоты трансивера при оптимально выбранном режиме работы схемы термоком-пенсации.

Повышение температурной стабильности рабочей частоты трансивера RA3AO

Анализ кривых 1-3 (рис. 2) показывает, что с помощью узла термокомпенсации можно добиться уменьшения отклонения частоты трансивера, связанного с его самопрогревом, и свести нестабильность частоты трансивера к величине дрейфа при установившемся температурном режиме работы трансивера.

Предложенная схема термокомпенсации обеспечивает нестабильность рабочей частоты трансивера не более 200 Гц в течение нескольких часов его работы.

Необходимо отметить, что рассматриваемый узел термокомпенсации не уменьшает величину дрейфа рабочей частоты трансивера.

Введение схемы термокомнснсации требует небольших затрат и незначительно усложняет схему трансивера RA3AO. Она также не приводит к изменению работы узла расстройкой частоты трансивера. Однако из-за изменений напряжения на варикапе VD1 при термокомпенсации происходит незначительное изменение величины диапазона расстройки частоты трансивера.

Схема термокомпснсации может найти применение в любом устройстве, имеющем параметрическую стабилизацию частоты гетеродина.

Схема узла термокомпенсации приведена на рис.3, а его включение в трансивер RA3AO показано на рис.1. Узел тсрмокомпснсации включается в разрыв (обозначенный точками А, В) цепи питания варикапа VD1 узла расстройки частоты трансивера. Узел тсрмокомнснсации сохраняет начальное напряжение в точке В, равное +8 В. Он выполнен на счетверенном операционном усилителе К 1401 УД 2Л (Б). В качестве термодатчика примечен терморезистор (R5), через который протекает стабильный ток, формируемый операционным усилителем DA1.1. Линеаризация температурной зависимости сопротивления резистора R5 в диапазоне температуры от минус 10°С до плюс 50°С осуществлена с помощью резистора R3. Терморезистор устанавливается на корпусе блоха ГПД трансивера. Изменение температуры блока ГПД приводит к изменению величины сопротивлении терморезистора, что в свою очередь приводит к отклонению напряжения в точке E относительно опорного напряжения в точке С, равного +7 В. на величину dU. Операционный усилитель DA1.2 формирует в точке D равное по величине и обратное по знаку напряжение dU.

Повышение температурной стабильности рабочей частоты трансивера RA3AO
Рис.3 (нажмите для увеличения)

Перемещением движка переменного резистора R10 можно получить на выходе масштабного усилителя DA1.4 необходимый знак и величину напряжения тсрмокомпснсации относительно выходного напряжения +8 В в пределах ± 1 В при изменениях температуры терморезистора относительно комнатной температуры на ±30'C.

Узел термокомпенсации смонтирован на печатной плате, устанавливаемой па боковой стенке блока ГПД. В узле применены резисторы типа С2-ЗЗП или МЛТ 0,125 Вт, СП5-1б, CП5-3B, конденсаторы типа КМ. Тсрморезистор типа СТ4-16А или СТ1-17 должен иметь надежный тепловой контакт с корпусом блока ГПД. Микросхему К1401УД2A (Б) можно заменить на две К140УД20 или четыре К140УД6 (К140УД608).

Настройка узла термокомпенсации должна проводиться в следующей последовательности.

Предварительная настройка узла термокомпенсации сводится к установке нулевого напряжения между точками С, D переменным резистором R6. Напряжение между точками С, D должно контролироваться тестером с током полного отклонения не более 100 мкА.

Проверка правильности предварительной настройки узла сводится к контролю напряжения в точке В, которое должно быть равно + (8±0,5) В при нормальной комнатной температуре внутри трансивера.

Окончательная настройка узла термокомпенсации проводится после часового прогрева трансивера. Регулировкой переменного резистора R 10 добиваются установки рабочей частоты трансивера, которая была при его включении.

После выключения и охлаждения трансивер вновь включают и проверяют стабильность рабочей частоты, дрейф которой должен быть подобен кривой 3 на рис. 2.

Литература

1. Дроздов В.В. Любительские KB трансиверы. - М.: Радио и связь, 1988.
2. Кривоносов Л.И. Температурная компенсация электронных схем. - М.: Связь, 1977.
3. Альтштуллер Г.Б. и др. Кварцевые генераторы. - Справочное пособие. - М.: Радио и связь, 1984.

Авторы: В.Усов, В.Гринман; Публикация: Н. Большаков, rf.atnn.ru

Смотрите другие статьи раздела Гражданская радиосвязь.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Рекомендуем скачать в нашей Бесплатной технической библиотеке:

раздел сайта Опыты по химии

сборники Новый Радиоежегодник

книга Фоторезисторы. Олеск А.О., 1966

книга Мощные низкочастотные транзисторы. Справочник. Лабутин В.К., 1964

статья Микропередатчик УКВ к телефону

статья Трифоник для магнитолы для простых усилителей

справочник Зарубежные микросхемы и транзисторы. Серия D

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:

[lol][cry][!][?]




Бесплатная техническая библиотека Бесплатная техническая документация для любителей и профессионалов