Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Сцинтилляционные детекторы ионизирующего излучения. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Дозиметры

Комментарии к статье Комментарии к статье

Для обнаружения ионизирующего излучения нередко используют способность некоторых веществ - сцинтилляторов - делать видимой, светящейся траекторию "простреливающей" их ионизирующей частицы.

Сцинтилляционные детекторы ионизирующих излучений имеют определенное преимущество перед счетчиками Гейгера - по амплитуде и длительности вспышки можно судить о типе и энергии породившей ее частицы. Важно и то, что сцинтилляционный счетчик имеет значительно большую эффективность, нежели счетчик Гейгера, фиксирующий обычно лишь одну-две частицы из ста в него попавших.

Конструктивно сцинтилляционный счетчик прост: нужный сцинтиллятор (см. приложение 7) наклеивают на катод фотоэлектронного умножителя (ФЭУ) и все это помещают в тщательно изолированный от посторонней подсветки бокс. Остальное - подсчет фотоимпульсов, сортировка их по амплитуде, форме и т.п. - дело обычной электронной техники.

Принципиальная схема фотоголовки сцинтилляционного счетчика приведена на рис. 81, а высоковольтного преобразователя для ее питания - на рис. 82. Напряжение питания ФЭУ - высокое по отношению к "земле" - подают обычно на его катод. Это позволяет связать анодную цепь ФЭУ с электронным анализатором прибора гальванически, учитывать при необходимости и постоянную составляющую его фототока.

Напряжение питания ФЭУ, его распределение между динодами и, соответственно, соотношения номиналов резисторов R2...R13, составляющих динодный делитель, зависят от типа фотоумножителя (см. приложение 6). Здесь мы воспользовались относительно низковольтным ФЭУ-85. Поскольку режим работы ФЭУ в сцинтилляторах бытового назначения близок к "темновому", сопротивления динодных резисторов могут быть и значительно выше рекомендованных (при сохранении пропорций).

Сцинтилляционные детекторы ионизирующего излучения
Рис. 81. Фотоголовка сцинтилляционного детектора ионизирующей радиации

Единственная оперативная регулировка в канале - резистор R14 - выполняет очень важную функцию: на компараторе DA1 им задают пороговое напряжение U3-4. Лишь импульсы, имеющие амплитуду Uимп>U3-4, откроют компаратор и на его выходе (выв. 9) будет сформирован импульс цифрового стандарта.

В автономной, дозиметрической аппаратуре, использующей ФЭУ, возникает проблема их питания. Необходимое ФЭУ высокое напряжение Uфэу (0,8...1 кВ и более), требования к его стабильности (фоточувствительность ФЭУ довольно сильно зависит от напряжения питания; см. приложение 7) предъявляют к устройствам, формирующим это напряжение, довольно жесткие требования.

Сцинтилляционные детекторы ионизирующего излучения
Рис. 82. Преобразователь для питания ФЭУ

Основу высоковольтного преобразователя, показанного на рис. 82, составляет блокинг-генератор, формирующий на обмотке II трансформатора Т1 импульсы напряжения с амплитудой Uимп@Uфэу. Через диодный столб VD3 они заряжают конденсатор С5, который становится таким образом источником питания фотоумножителя. Пульсации Uфэу (они имею форму "пилы" с временными интервалами между "зубцами" tп@R7·C4) снимает RC-фильтр (С5, R8, С6, R9, С7).

В цепь питания блокинг-генератора введен транзистор VT2, коллекторный ток которого зависит от тока базы, зависящего, в свою очередь, от тока стока полевого транзистора VT3 . Напряжение на затворе этого транзистора зависит от Uфэу, напряжения на стабилитроне VD1 (транзистор VT1 - его токозадающий "резистор") и соотношения "плечей" делителя R3+R4, R6 (резистором R3 выставляют нужное Uфэу ). Легко видеть, что при понижении Uфэу (по абсолютной величине), возникшем по какой-либо дестабилизирующей причине, напряжение питания блокинг-генератора увеличится и воздействие дестабилизирующего фактора будет тем самым в значительной мере компенсировано.

Трансформатор блокинг-генератора наматывают на ферритовом кольце М3000МН 20х12х6 мм. В связи с тем, что этот феррит имеет низкое объемное сопротивление, острые ребра сердечника необходимо загладить и тщательно весь его изолировать; обмотать, например, лавсановой или фторопластовой лентой.

Первой наматывают обмотку II, содержащую 800 витков провода ПЭВ-2 0,07. Намотку ведут в одну сторону, почти виток к витку, оставляя между началом и концом обмотки промежуток 2...3 мм. Обмотку II также покрывают слоем изоляции. Обмотку I (8 витков ПЭВШО 0,15...0,25) и обмотку III (3 витка тем же проводом) укладывают по сердечнику возможно равномернее.

Фазировка обмоток (точками на Т1 отмечены их синфазные концы) должна быть соблюдена при монтаже трансформатора.

О деталях преобразователя. Резистор R6 - КИМ-0,125, R3 - СП-38А, другие - МЛТ-0,125 и 0,25. Конденсаторы C3, С4 - КМ-6 или К10-176; С5,С7 - К15-5-Н70 (1,5 кВ) или другие керамические на напряжение не менее 1 кВ; С1 и С2 - любые оксидные. Диодный столб 2Ц111А-1 можно заменить четырьмя последовательно включенными диодами типа КД102А. При каких-либо иных заменах нужно иметь в виду, что диодный столб VD3 не только должен иметь высокое обратное напряжение - не менее Uфэу, но и малый (при этом напряжении) ток утечки - не более 0,1 мкА.

Транзистор блокинг-генератора можно заменить на КТ630В. Здесь определяющим параметром является напряжение насыщения транзистора в импульсном режиме: при токе в импульсе 1...1,5 А - Uкэ нас имп Ј0,3 В. Остаточное напряжение на коллекторе транзистора нетрудно оценить по осциллограмме: по "зазору" между плоской вершиной импульса и линией нулевого потенциала.

Ток, потребляемый высоковольтным преобразователем от источника питания, будет зависеть, конечно, от нагрузки. С двумя описанными здесь сцинтилляционными головками, работавшими в режиме радиационного локатора, он не превышал 16 мА.

Публикация: cxem.net

Смотрите другие статьи раздела Дозиметры.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Ранняя Вселенная не была ледяной 28.11.2025

Понимание того, как формировались первые структуры во Вселенной, требует взгляда в эпохи, в которых не существовало ни звезд, ни галактик, ни привычных нам источников света. Научные группы по всему миру пытаются восстановить картину тех времен при помощи слабейших радиосигналов, оставшихся от водорода, который наполнял космос вскоре после Большого взрыва. Новые результаты, полученные на радиотелескопе Murchison Widefield Array в Австралии, неожиданным образом меняют представление об этих ранних этапах. Сразу после Большого взрыва, произошедшего около 13,8 миллиарда лет назад, пространство стремительно расширялось и остывало. Через несколько сотен тысяч лет образовался нейтральный водород, и началась так называемая эпоха тьмы, когда Вселенная была лишена источников излучения. Лишь значительно позже гравитация собрала газ в плотные области, где зародились первые звезды и ранние черные дыры, а их интенсивное излучение привело к реионизации водорода и окончательному появлению света. ...>>

Устройство идеальной очистки воздуха 28.11.2025

Качество воздуха в закрытых помещениях давно стало важнейшим фактором здоровья, особенно в городах, где люди проводят подавляющую часть времени внутри зданий. В последние годы исследователи уделяют все больше внимания именно тем технологиям, которые способны задерживать или разрушать вредоносные частицы до того, как они попадут в дыхательные пути человека. Одним из таких новаторских направлений стала разработка инженеров Университета Британской Колумбии в Оканагане, которые предложили принципиально иной подход к очистке воздуха в присутствии людей. По словам профессора Школы инженерии доктора Санни Ли, традиционные персонализированные вентиляционные системы действительно могут улучшать качество воздуха вокруг пользователя, однако их принцип работы имеет ряд ограничений. Человек вынужден находиться в строго определенной зоне, а одновременное использование одной системы несколькими людьми снижает эффективность. Кроме того, непрерывный поток сухого очищенного воздуха способен вызывать ...>>

Ощущение текстуры через экран гаджета 27.11.2025

Гаджеты научились передавать изображение и звук с впечатляющей реалистичностью, но тактильные ощущения по-прежнему остаются недоступными для полноценной цифровой симуляции. Именно поэтому инженеры и исследователи во всем мире стремятся создать технологии, которые позволят "почувствовать" виртуальный объект так же естественно, как и настоящий. Новая разработка специалистов Северо-Западного университета США стала одним из самых заметных шагов в этом направлении. Возглавлявшая исследование аспирантка Сильвия Тан (Sylvia Tan) подчеркивает, что прикосновение остается последним фундаментальным чувственным каналом, для которого пока нет зрелого цифрового аналога. По ее словам, если визуальные и звуковые интерфейсы давно обеспечивают высокую степень реалистичности, то осязание лишь начинает приближаться к этому уровню. В недавней публикации в журнале Science Advances Тан отмечает, что новая технология способна изменить само представление о взаимодействии человека с устройствами. Разработ ...>>

Случайная новость из Архива

Балун BALF-CC26-05D3 для трансиверов CC26xx 24.08.2017

Компания ST выпустила новый балун BALF-CC26-05D3 предназначенный для согласования приемопередатчиков CC2620, CC2630, CC2640, CC2650 (Texas Instruments) c антенной. Балун позволяет исключить все LC-элементы между выходом CC26xx и антенной, что упрощает разводку и уменьшает площадь печатной платы.

Дополнительная экономия получается за счет сокращения числа точек пайки. Балун работает в диапазоне 2400 МГц и оптимизирован для использоваться с микросхемами CC2640 и CC2650 в корпусах 5х5 мм. Кроме функции согласования импедансов, балун BALF-CC26-05D3 содержит встроенный фильтр гармоник, что упрощает сертификацию для Bluetooth и ZigBee-устройств.

Особенности BALF-CC26-05D3:

Согласующий ВЧ-трансформатор 2,45 ГГц
Встроенный фильтр гармоник
Малые вносимые потери
Низкий амплитудный дисбаланс
Технология "Чип на стекле"
Размер менее 1,5 мм2

Другие интересные новости:

▪ Велосипеды AMD

▪ Аналоговые квантовые симуляторы

▪ Сыр из водорослей

▪ Носимые глаза

▪ Защитная каска с дополненной реальностью

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Дом, приусадебное хозяйство, хобби. Подборка статей

▪ статья Кин Хаббард. Знаменитые афоризмы

▪ статья За что лошадь лишили почестей? Подробный ответ

▪ статья Требования безопасности при эксплуатации грузоподъемных машин

▪ статья Мелки (для дерева, кожи, материи и т. д.). Простые рецепты и советы

▪ статья Электроплита. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025