Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Устройства на микросхеме MAX869L. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Радиолюбителю-конструктору

Комментарии к статье Комментарии к статье

Микросхема MAX869L - электронный ключ на р-канальном полевом транзисторе с ограничителем протекающего тока - предназначена для коммутации низковольтных цепей питания электронных узлов, одновременно обеспечивая защиту источника от перегрузки. Кроме использования по прямому назначению, на ней можно собрать некоторые другие полезные в радиолюбительской практике устройства.

Микросхему, о которой пойдет речь, выпускают в бескорпусном исполнении (MAX869LC/D) и в малогабаритном 16-выводном корпусе размерами приблизительно 5x6,5 мм вместе с выводами (MAX869LEEE). Конечно, для применения в радиолюбительских конструкциях пригоден только второй вариант.

На вход имеющегося в микросхеме MAX869L ключа (параллельно соединенные выводы 1,4, 5,12,13,16) разрешено подавать положительное относительно общего провода (вывод 8) напряжение 2,7...5,5 В. Нагрузку подключают к выходу ключа - выводам 2, 3, 6, 11, 14, 15, также соединив их параллельно. Не рекомендуется частично использовать входные и выходные выводы, оставляя некоторые из них свободными. Это может привести к перегоранию тонких соединительных проводов внутри микросхемы.

Сопротивление ключа в открытом состоянии не превышает 0,045 Ом. Встроенный ограничитель начинает действовать по достижении протекающим током значения Iогр. Порог ограничения в интервале от 0,4 до 2,4 А устанавливают с помощью подключенного между выводами 8 и 9 микросхемы резистора номиналом R-1,2lorp (ток - А, сопротивление - кОм). Погрешность формулы - не более ±20 %. Благодаря ограничителю даже при напряжении между выходом и общим проводом менее 1,6 В ток через ключ не превышает 1,4 Iогр.

Чтобы разомкнуть ключ, на вывод 7 микросхемы следует подать сигнал высокого логического уровня. Имеется выход с открытым стоком (вывод 10). Низкий логический уровень здесь свидетельствует, что сработал ограничитель тока ключа либо температура кристалла микросхемы превысила 135 °С. В последнем случае ключ автоматически размыкается и остается в этом состоянии, пока кристалл не остынет до 125 °С.

На рис, 1 показана схема электронного предохранителя на микросхеме MAX869L. Кроме нее, в устройстве имеется триггер на транзисторах VT1 и VT2, который устанавливают нажатием кнопки SB1 в исходное состояние: VT1 - закрыт, VT2 - открыт. Пока ток нагрузки не превышает заданного с помощью подстроенного резистора R7 порогового значения, транзистор внутри микросхемы (его сток соединен с выводом 10) закрыт и не шунтирует участок база-эмиттер транзистора VT2. Логический уровень на выводе 7 DA1 - низкий, на нагрузку через замкнутый ключ поступает напряжение питания. Светящийся светодиод HL2 сигнализирует о нормальном режиме работы, а светодиод HL1 погашен.

Устройства на микросхеме MAX869L

Как только протекающий через ключ ток превысит Iorp, база транзистора VT2 через открывшийся внутренний транзистор микросхемы будет соединена с общим проводом, в результате транзистор VT2 закроется, светодиод HL2 погаснет. Одновременно откроется транзистор VT1 и, сигнализируя об аварии, зажжется светодиод HL1. Высокий логический уровень на коллекторе транзистора VT2 и на выводе 7 DA1 останется неизменным и после устранения перегрузки, удерживая ключ разомкнутым. Вновь включают нагрузку нажатием на кнопку SB1, возвращающим триггер в исходное состояние.

Следует отметить, что если причина аварии не устранена, длительное время поддерживать низкий логический уровень на выводе 7 микросхемы DA1 нельзя, так как в этом случае микросхема находится в режиме ограничения тока, рассеивая мощность до 1,4IогрΔU, где ΔU - разность напряжений между входом и выходом ключа. Допустимое значение рассеиваемой мощности - 667 мВт. В рассматриваемом устройстве продолжительность возможной перегрузки ограничена длительностью зарядки конденсатора С2 через резистор R5 и светодиод HL2. Резистор R3 служит для разрядки конденсатора в интервалах между нажатиями кнопки.

Предохранитель можно собрать на печатной плате размерами 19x14 мм из двусторонне фольгированного стеклотекстолита, изображенной на рис. 2 в масштабе 2:1. Она рассчитана на поверхностный монтаж большинства элементов, располагаемых на обеих сторонах платы. Выводы деталей и соединительные провода, вставляемые в отверстия платы, следует припаять к контактным площадкам с обеих сторон. В оставшиеся не занятыми переходные отверстия следует вставить короткие отрезки неизолированного провода, также припаяв их с двух сторон. Постоянные резисторы - Р1-12, подстроенный - RVG или POZ, конденсаторы С1 и C3 - К10-17 или аналогичные импортные. В случае применения транзисторов серии КТ315, резисторов МЛТ и других деталей больших размеров габариты платы придется увеличить.

Устройства на микросхеме MAX869L

На микросхеме MAX869L по схеме, показанной на рис. 3, можно собрать таймер, отключающий нагрузку через некоторое время после подачи напряжения питания. В начальный момент конденсатор С2 разряжен, на входе 7 микросхемы DA1 - низкий логический уровень, поэтому ключ открыт и на нагрузку поступает питающее напряжение. Как только конденсатор зарядится через резистор R1, ключ будет закрыт, нагрузка - обесточена. Испытания макета таймера показали, что при напряжении питания 5,5 В выключение происходит скачком, как только напряжение на конденсаторе С2 превысит 2 В. Длительность выдержки при указанных на схеме номиналах элементов R1 и С2 - приблизительно 4,5 мин.

Устройства на микросхеме MAX869L

После срабатывания таймера потребляемый им ток - 15... 17 мкА и уменьшается еще в несколько раз после полной зарядки конденсатора. Разрядив конденсатор нажатием на кнопку SB1, вновь включают нагрузку на заданное время. Если необходима задержка включения, а не выключения нагрузки, достаточно поменять местами резистор R1 и конденсатор С2 (вместе с кнопкой SB1). Резистор R2 указанного на схеме номинала ограничивает ток нагрузки до 2,2...2,4 А.

Еще одно устройство, которое можно собрать на микросхеме MAX869L, - простой, но мощный генератор импульсов. Достаточно, как показано на рис. 4, между управляющим входом (выводом 7) и выходом ключа установить интегрирующую цепь R1R3C2. В результате на нагрузке вырабатываются импульсы напряжения с частотой, определяемой параметрами этой цепи, и скважностью приблизительно 3. Следует отметить, что без нагрузки генератор не работает, так как цепь разрядки конденсатора С2 разорвана. Суммарное сопротивление резисторов R1 и R3 должно быть в несколько раз больше сопротивления нагрузки.

Устройства на микросхеме MAX869L

Ток нагрузки (импульсный) может достигать 2 А. Частоту генерации F определяют по формуле

(частота - кГц, сопротивление - кОм, емкость - мкФ). Максимальная частота - 20 кГц. Длительность фронта импульсов (на нагрузке 10 Ом) - приблизительно 10 мкс, спада - 5 мкс.

Если цепи зарядки и разрядки конденсатора С2 сделать раздельными, как на рис. 5, получим генератор импульсов изменяемой скважности, который может служить регулятором средней мощности, отдаваемой в нагрузку, например, лампу накаливания. Если нагрузка - электродвигатель или другое устройство со значительной индуктивной составляющей сопротивления, в моменты коммутации (при выключении тока) на ней возникают выбросы ЭДС самоиндукции, которые могут вывести микросхему из строя. Ее защищают с помощью диодов VD3, VD4, показанных на рис. 5 штриховыми линиями.

Устройства на микросхеме MAX869L

Аналогичные устройства можно построить на микросхемах MAX893L (максимальный ток 1,2 A), MAX890L (1 А), MAX891L, MAX894L (0,5 A), MAX892L, MAX895L (0,25 А), причем микросхемы MAX894L, MAX895L содержат по два одинаковых ключа с независимыми управлением и установкой порога срабатывания токовой защиты. Корпусы этих микросхем - восьмивыводные с шагом выводов 1,27 и 0,65 мм.

Автор: И.Нечаев, г.Курск

Смотрите другие статьи раздела Радиолюбителю-конструктору.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Горькие продукты улучшают работу мозга 08.11.2025

Как выяснили японские ученые, горький вкус флаванолов играет важную роль в стимуляции центральной нервной системы. Даже при минимальном усвоении этих веществ организм получает сигнал к повышению активности нейромедиаторов и улучшению когнитивных функций, что делает натуральные продукты с горьким вкусом потенциально полезными для мозга и общей физиологии. В поисках способов улучшить работу мозга ученые все чаще обращаются к натуральным соединениям, содержащимся в привычных продуктах питания. Одним из таких веществ являются флаванолы, присутствующие в какао, красном вине и ягодах. Исследователи из Технологического института Сибаура в Японии выяснили, что горький и вяжущий вкус этих соединений способен активировать мозг через вкусовые рецепторы, способствуя улучшению памяти, внимания и способности к обучению. Ранее было известно, что флаванолы защищают нейроны и поддерживают когнитивные функции, однако их биодоступность - доля вещества, поступающая в кровь - крайне низка. Это вызвал ...>>

Дождевой электрогенератор 08.11.2025

Группа разработчиков Нанкинского университета аэронавтики и астронавтики представила дождевой электрогенератор, который превращает дождевые капли в источник электричества, используя саму воду как структурный и электрический элемент. В отличие от традиционных капельных генераторов, где электричество создается на твердых диэлектрических пленках с металлическими электродами, новое устройство плавает непосредственно на поверхности воды. Вода одновременно выполняет роль опоры и проводника, что позволило снизить вес системы на 80%, а стоимость уменьшить почти наполовину, сохранив при этом мощность до 250 вольт на каждую каплю. "Мы позволили воде одновременно выполнять структурную и электрическую функции, создав легкую, доступную и масштабируемую систему", - объяснил профессор Ванлин Гуо, ведущий автор исследования. Такая концепция открывает путь к созданию гидровольтаических систем, которые могут работать в водоемах без использования суши, дополняя солнечные и ветровые технологии. П ...>>

Климат влияет на длительность беременности 07.11.2025

Беременность традиционно воспринимается как естественный биологический процесс с предсказуемыми сроками, однако современные исследования все чаще доказывают, что на ее продолжительность влияют факторы, выходящие далеко за пределы медицины. Среди них особое место занимают климат и окружающая среда - именно эту взаимосвязь впервые подробно изучили ученые из Университета Кертина в Австралии. Их работа раскрывает, что экстремальные погодные условия способны не только вызывать преждевременные роды, но и, напротив, удлинять срок беременности. Команда исследователей проанализировала данные почти 400 тысяч новорожденных, появившихся на свет в Западной Австралии. Результаты оказались неожиданными: климатические колебания заметно влияли на организм будущих матерей, особенно у тех, кто рожал после 41-й недели беременности. По словам доктора Сильвестра Додзи Ньядана из Школы народного здоровья Университета Кертина, проблема перенашивания долгое время оставалась в тени, хотя ее последствия могут ...>>

Случайная новость из Архива

Морской ветрогенератор GE Haliade-X 26.12.2022

Компания GE Renewable Energy объявила, что ее ветряная турбина Haliade-X мощностью 12 МВт+ получила сертификат полного типа для работы мощностью до 14,7 МВт от DNV (крупнейшего в мире независимого органа по сертификации).

DNV является международным аккредитованным регистратором и классификационным обществом со штаб-квартирой в Хевике, Норвегия. Ранее Haliade-X получила сертификацию, подтверждающую, что турбина может работать на мощности до 13,6 МВт.

Сертификат полного типа - это проверка безопасности и надежности турбин, в соответствии с проектными спецификациями (Haliade-X в настоящее время является крупнейшей ветряной турбиной с полной сертификацией).

Процесс сертификации Haliade-X (14.7 МВт) включал в себя серию испытаний прототипа, расположенного в Роттердаме, Нидерланды. Прототип был тщательно протестирован с ноября 2019 года и установил несколько мировых рекордов по непрерывной выходной мощности за один день.

"В DNV мы прогнозируем 2 ТВт сети, установленной морской ветроэнергетики к 2050 году. Это развитие также связано с более крупными турбинами, такими как Haliade-X GE. Увеличение размера турбин, лопастей и башни приведет к улучшению факторов емкости. Мы рады поддержать GE нашими сертификационными услугами для обеспечения безопасных и надежных ветряных турбин, поддерживающих рост ветроэнергетики", - отметил Ким Сандгаард-Мерк, исполнительный вице-президент по сертификации возобновляемых источников энергии в DNV

Только одна морская ветряная турбина GE Haliade-X 14,7 MW-220 может генерировать до 76 ГВт&#8901;ч валовой годовой выработки энергии. Она способна обеспечить энергией эквивалент 20 000 европейских домохозяйств и избежать выбросов почти 53 000 тонн углекислого газа.

Haliade-X мощностью 14,7 МВт впервые будет введена в эксплуатацию на ветряной электростанции Dogger Bank мощностью 3,6 ГВт в Великобритании, которая станет крупнейшей морской ветряной электростанцией в мире, когда будет завершена. Это совместное предприятие SSE Renewables, Equinor и Vargronn, расположенное неподалеку от восточного побережья Йоркшира.

Благодаря своему размеру и масштабу Dogger Bank строится в три последовательных этапа: A, B и C. В Dogger C будут использовать 87 турбин Haliade-X 14 МВт. Первые три этапа смогут обеспечить электроэнергией до шести миллионов домов в Великобритании (в стране насчитывается около 28,1 миллиона домохозяйств). В случае реализации четвертой фазы мощность крупнейшей в мире морской ветроэлектростанции достигнет почти 5 ГВт.

Другие интересные новости:

▪ Мясной стейк выращен из вырезки

▪ Частные компании для полетов на Луну

▪ Промывка винных пробок

▪ Полностью электрический вездеход Bollinger B1

▪ Ethernet-коммутаторы Microchip SparX-5

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Детекторы напряженности поля. Подборка статей

▪ статья Жалкий лепет оправданья. Крылатое выражение

▪ статья Какая комната Белого дома названа в честь сразу двух президентов? Подробный ответ

▪ статья Весовщик железнодорожных вагонов. Типовая инструкция по охране труда

▪ статья Радиоудлинитель спутникового тюнера. Энциклопедия радиоэлектроники и электротехники

▪ статья Сверхэкономичный приемник. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025