Menu English Ukrainian Russian Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


Устройства на микросхеме MAX869L. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Радиолюбителю-конструктору

Комментарии к статье Комментарии к статье

Микросхема MAX869L - электронный ключ на р-канальном полевом транзисторе с ограничителем протекающего тока - предназначена для коммутации низковольтных цепей питания электронных узлов, одновременно обеспечивая защиту источника от перегрузки. Кроме использования по прямому назначению, на ней можно собрать некоторые другие полезные в радиолюбительской практике устройства.

Микросхему, о которой пойдет речь, выпускают в бескорпусном исполнении (MAX869LC/D) и в малогабаритном 16-выводном корпусе размерами приблизительно 5x6,5 мм вместе с выводами (MAX869LEEE). Конечно, для применения в радиолюбительских конструкциях пригоден только второй вариант.

На вход имеющегося в микросхеме MAX869L ключа (параллельно соединенные выводы 1,4, 5,12,13,16) разрешено подавать положительное относительно общего провода (вывод 8) напряжение 2,7...5,5 В. Нагрузку подключают к выходу ключа - выводам 2, 3, 6, 11, 14, 15, также соединив их параллельно. Не рекомендуется частично использовать входные и выходные выводы, оставляя некоторые из них свободными. Это может привести к перегоранию тонких соединительных проводов внутри микросхемы.

Сопротивление ключа в открытом состоянии не превышает 0,045 Ом. Встроенный ограничитель начинает действовать по достижении протекающим током значения Iогр. Порог ограничения в интервале от 0,4 до 2,4 А устанавливают с помощью подключенного между выводами 8 и 9 микросхемы резистора номиналом R-1,2lorp (ток - А, сопротивление - кОм). Погрешность формулы - не более ±20 %. Благодаря ограничителю даже при напряжении между выходом и общим проводом менее 1,6 В ток через ключ не превышает 1,4 Iогр.

Чтобы разомкнуть ключ, на вывод 7 микросхемы следует подать сигнал высокого логического уровня. Имеется выход с открытым стоком (вывод 10). Низкий логический уровень здесь свидетельствует, что сработал ограничитель тока ключа либо температура кристалла микросхемы превысила 135 °С. В последнем случае ключ автоматически размыкается и остается в этом состоянии, пока кристалл не остынет до 125 °С.

На рис, 1 показана схема электронного предохранителя на микросхеме MAX869L. Кроме нее, в устройстве имеется триггер на транзисторах VT1 и VT2, который устанавливают нажатием кнопки SB1 в исходное состояние: VT1 - закрыт, VT2 - открыт. Пока ток нагрузки не превышает заданного с помощью подстроенного резистора R7 порогового значения, транзистор внутри микросхемы (его сток соединен с выводом 10) закрыт и не шунтирует участок база-эмиттер транзистора VT2. Логический уровень на выводе 7 DA1 - низкий, на нагрузку через замкнутый ключ поступает напряжение питания. Светящийся светодиод HL2 сигнализирует о нормальном режиме работы, а светодиод HL1 погашен.

Устройства на микросхеме MAX869L

Как только протекающий через ключ ток превысит Iorp, база транзистора VT2 через открывшийся внутренний транзистор микросхемы будет соединена с общим проводом, в результате транзистор VT2 закроется, светодиод HL2 погаснет. Одновременно откроется транзистор VT1 и, сигнализируя об аварии, зажжется светодиод HL1. Высокий логический уровень на коллекторе транзистора VT2 и на выводе 7 DA1 останется неизменным и после устранения перегрузки, удерживая ключ разомкнутым. Вновь включают нагрузку нажатием на кнопку SB1, возвращающим триггер в исходное состояние.

Следует отметить, что если причина аварии не устранена, длительное время поддерживать низкий логический уровень на выводе 7 микросхемы DA1 нельзя, так как в этом случае микросхема находится в режиме ограничения тока, рассеивая мощность до 1,4IогрΔU, где ΔU - разность напряжений между входом и выходом ключа. Допустимое значение рассеиваемой мощности - 667 мВт. В рассматриваемом устройстве продолжительность возможной перегрузки ограничена длительностью зарядки конденсатора С2 через резистор R5 и светодиод HL2. Резистор R3 служит для разрядки конденсатора в интервалах между нажатиями кнопки.

Предохранитель можно собрать на печатной плате размерами 19x14 мм из двусторонне фольгированного стеклотекстолита, изображенной на рис. 2 в масштабе 2:1. Она рассчитана на поверхностный монтаж большинства элементов, располагаемых на обеих сторонах платы. Выводы деталей и соединительные провода, вставляемые в отверстия платы, следует припаять к контактным площадкам с обеих сторон. В оставшиеся не занятыми переходные отверстия следует вставить короткие отрезки неизолированного провода, также припаяв их с двух сторон. Постоянные резисторы - Р1-12, подстроенный - RVG или POZ, конденсаторы С1 и C3 - К10-17 или аналогичные импортные. В случае применения транзисторов серии КТ315, резисторов МЛТ и других деталей больших размеров габариты платы придется увеличить.

Устройства на микросхеме MAX869L

На микросхеме MAX869L по схеме, показанной на рис. 3, можно собрать таймер, отключающий нагрузку через некоторое время после подачи напряжения питания. В начальный момент конденсатор С2 разряжен, на входе 7 микросхемы DA1 - низкий логический уровень, поэтому ключ открыт и на нагрузку поступает питающее напряжение. Как только конденсатор зарядится через резистор R1, ключ будет закрыт, нагрузка - обесточена. Испытания макета таймера показали, что при напряжении питания 5,5 В выключение происходит скачком, как только напряжение на конденсаторе С2 превысит 2 В. Длительность выдержки при указанных на схеме номиналах элементов R1 и С2 - приблизительно 4,5 мин.

Устройства на микросхеме MAX869L

После срабатывания таймера потребляемый им ток - 15... 17 мкА и уменьшается еще в несколько раз после полной зарядки конденсатора. Разрядив конденсатор нажатием на кнопку SB1, вновь включают нагрузку на заданное время. Если необходима задержка включения, а не выключения нагрузки, достаточно поменять местами резистор R1 и конденсатор С2 (вместе с кнопкой SB1). Резистор R2 указанного на схеме номинала ограничивает ток нагрузки до 2,2...2,4 А.

Еще одно устройство, которое можно собрать на микросхеме MAX869L, - простой, но мощный генератор импульсов. Достаточно, как показано на рис. 4, между управляющим входом (выводом 7) и выходом ключа установить интегрирующую цепь R1R3C2. В результате на нагрузке вырабатываются импульсы напряжения с частотой, определяемой параметрами этой цепи, и скважностью приблизительно 3. Следует отметить, что без нагрузки генератор не работает, так как цепь разрядки конденсатора С2 разорвана. Суммарное сопротивление резисторов R1 и R3 должно быть в несколько раз больше сопротивления нагрузки.

Устройства на микросхеме MAX869L

Ток нагрузки (импульсный) может достигать 2 А. Частоту генерации F определяют по формуле

(частота - кГц, сопротивление - кОм, емкость - мкФ). Максимальная частота - 20 кГц. Длительность фронта импульсов (на нагрузке 10 Ом) - приблизительно 10 мкс, спада - 5 мкс.

Если цепи зарядки и разрядки конденсатора С2 сделать раздельными, как на рис. 5, получим генератор импульсов изменяемой скважности, который может служить регулятором средней мощности, отдаваемой в нагрузку, например, лампу накаливания. Если нагрузка - электродвигатель или другое устройство со значительной индуктивной составляющей сопротивления, в моменты коммутации (при выключении тока) на ней возникают выбросы ЭДС самоиндукции, которые могут вывести микросхему из строя. Ее защищают с помощью диодов VD3, VD4, показанных на рис. 5 штриховыми линиями.

Устройства на микросхеме MAX869L

Аналогичные устройства можно построить на микросхемах MAX893L (максимальный ток 1,2 A), MAX890L (1 А), MAX891L, MAX894L (0,5 A), MAX892L, MAX895L (0,25 А), причем микросхемы MAX894L, MAX895L содержат по два одинаковых ключа с независимыми управлением и установкой порога срабатывания токовой защиты. Корпусы этих микросхем - восьмивыводные с шагом выводов 1,27 и 0,65 мм.

Автор: И.Нечаев, г.Курск

Смотрите другие статьи раздела Радиолюбителю-конструктору.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Использование Apple Vision Pro во время операций 16.03.2024

Медицинская команда больницы Кромвеля в Лондоне впервые применила Apple Vision Pro в ходе двух операций на позвоночнике. Это событие подтверждает потенциал гарнитуры в качестве медицинского инструмента, изменяющего подход к хирургической практике. Хотя сами врачи не использовали Vision Pro, операционная медсестра работала с виртуальной реальностью, используя очки во время подготовки и выполнения процедур. Гарнитура позволила просматривать виртуальные экраны в операционной, выбирать инструменты и следить за ходом операции. Программное обеспечение, разработанное компанией eXeX, специализирующейся на создании приложений на основе искусственного интеллекта для хирургии, существенно улучшило процесс оказания медицинской помощи пациентам. Использование Apple Vision Pro открывает новые возможности для разработки приложений в сфере здравоохранения, таких как клиническое образование, планирование операций, обучение и медицинская визуализация. Внедрение Apple Vision Pro в медицинскую пр ...>>

Хранение углерода в Северное море 16.03.2024

Министр энергетики Норвегии Терье Осланд объявил о запуске проекта Longship, нацеленного на создание центрального хранилища углекислого газа в Северном море. Этот амбициозный проект оценивается в $2,6 млрд и направлен на применение технологии CCS (углеродного захвата и хранения) для смягчения воздействия климатических изменений. Норвегия уже имеет опыт в области CCS благодаря успешным проектам Sleipner и Snohvit, и сейчас стремится увеличить объем углерода, запечатываемого под морским дном. План Longship предусматривает создание мощности по захвату и хранению 1,5 млн. тонн углерода ежегодно в течение 25 лет. Несмотря на позитивные перспективы, существуют опасения по поводу долгосрочных последствий такого хранения. Однако сторонники проекта утверждают, что морское хранение углерода имеет ряд преимуществ, включая минимальное воздействие на окружающую среду. Проект Longship осуществляется при участии компаний Equinor, Shell и TotalEnergies через совместное предприятие Northern Li ...>>

Выращены мини-органы из амниотической жидкости человека 15.03.2024

Международная команда ученых под руководством профессора Фань Сюлиня из Университета Чжэцзян разработала уникальный способ выращивания мини-органов из клеток, обнаруженных в амниотической жидкости человека. Этот значительный прорыв в медицине может привести к улучшению диагностики и лечения врожденных заболеваний. Органоиды, представляющие собой трехмерные клеточные структуры, имитирующие органы в меньшем масштабе, были выращены из клеток легких, почек и тонкого кишечника, найденных в амниотической жидкости. Этот метод открывает новые возможности для изучения различных состояний плода и может стать ключом к ранней диагностике и лечению врожденных дефектов. Хотя пока не проводились попытки использования этого метода в лечении, ученые надеются, что их исследования в будущем помогут бороться с серьезными врожденными заболеваниями, которые затрагивают миллионы новорожденных ежегодно. Этот прорыв может изменить практику медицинских вмешательств, позволяя диагностировать и лечить врожд ...>>

Случайная новость из Архива

Мировой океан накапливает ртуть и выбрасывает его в атмосферу 02.04.2023

Новое исследование показало, что избыточное количество ртути попадает в атмосферу из Мирового океана. Оценка количества ртути в атмосфере была повышена на 40%. Практически вся ртуть в природе встречается в связанном виде - в киноваре. И за рассеяние этого отравляющего вещества несет ответственность в основном деятельность человека.

Группа ученых-экологов, работающих в нескольких институтах Китая и США, а также в одном из институтов Бельгии, обнаружила, что избыточное количество ртути, попадающей в атмосферу в рамках глобального кругооборота, поступает из Мирового океана.

Ртуть - это тяжелый серебристо-белый металл, существующий в жидком состоянии при комнатной температуре. Понятно, что она находится в окружающей среде и в большинстве растений и животных. В природе ртуть обычно встречается в месторождениях киновари. Таким образом, большая часть ртути, обнаруженная в окружающей среде, является результатом деятельности человека.

Повышенный по сравнению с нормой уровень ртути в организме может привести к целому ряду заболеваний, включая тревожность, раздражительность и депрессию. Предыдущие исследования показали, что наиболее распространенная форма отравления ртутью возникает при употреблении морепродуктов.

Новая модель показала расчетные уровни ртути по всему земному шару и в атмосфере. Исследователи сравнили свои результаты с другими эталонными моделями и обнаружили существенную разницу. Согласно их модели, в атмосферу ежегодно попадает на 40% больше ртути, чем отмечено в эталонных моделях. Разница, по их мнению, заключалась в количестве ртути, находящемся в Мировом океане. Новая модель показала более высокое содержание ртути в океанах, чем считалось ранее, и более высокие выбросы в атмосферу.

Команда предполагает, что более высокие уровни ртути в атмосфере почти наверняка приводят к увеличению количества ртути в окружающей среде, что может поставить людей под угрозу.

Другие интересные новости:

▪ Металлическое топливо

▪ Энергия из выдыхаемого людьми углекислого газа

▪ Пластик из картофеля

▪ Сладости из новогодней елки

▪ Хомяк спит - теломеры растут

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Видеотехника. Подборка статей

▪ статья Закон Эрстеда. История и суть научного открытия

▪ статья Где и когда появилась в Европе первая кофейня? Подробный ответ

▪ статья Линейный обходчик магистральных трубопроводов. Типовая инструкция по охране труда

▪ статья Полиэтиленовая изоляция. Энциклопедия радиоэлектроники и электротехники

▪ статья Живое электричество. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





All languages of this page

Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2024