Menu Home

Бесплатная техническая библиотека для любителей и профессионалов Бесплатная техническая библиотека


О расчете ступенейета ступеней на полевом транзисторе. Энциклопедия радиоэлектроники и электротехники

Бесплатная техническая библиотека

Энциклопедия радиоэлектроники и электротехники / Радиолюбителю-конструктору

Комментарии к статье Комментарии к статье

расчете ступенейет различных ступеней на полевом транзисторе будет заметно проще, если использовать линейную аппроксимацию его характеристики, предложенную автором этой статьи. Если напряжение отсечки и начальный ток стока конкретного экземпляра транзистора известны, то такой расчете ступенейет дает неплохое совпадение с практикой.

Известно, что почти все литературные источники описывают расчете ступенейет усилительных ступеней с полевым транзистором только в режиме малого сигнала переменного тока. Непросто найти даже рекомендации по выбору начального режима транзистора. Между тем для большинства практических случаев нужнее расчете ступенейет ступени на постоянном токе.

Предлагаемая в статье методика позволяет провести расчете ступенейет наиболее часто встречающихся на практике узлов - усилителей постоянного тока, стабилизаторов тока и т. д. При этом расчете ступенейет по переменному току в режиме малого сигнала для низко- и средне-частотных сигналов будет лишь частным случаем более общего расчете ступенейета по постоянному току.

Для определенности ограничимся рассмотрением n-канальных транзисторов со встроенным каналом; для р-канальных нужно только изменить полярность напряжения.

Принято переходные характеристики lc=f(Uзи) транзистора аппроксимировать квадратичной функцией. Это в значительной степени справедливо для транзисторов с одиночным каналом, но их давно уже не выпускают. В настоящее время даже маломощные полевые транзисторы представляют собой сборку из нескольких включенных параллельно каналов-ячеек, а мощные содержат их до нескольких сотен, иногда и тысяч.

В силу этого и некоторых других факторов реальная переходная характеристика таких транзисторов лежит между линейной и квадратичной функциями. Аппроксимация реальной характеристики квадратичной функцией способна привести лишь к усложнению расчете ступенейетов, не оправданному соответствующим повышением точности. Целесообразнее для расчете ступенейетов использовать линейную аппроксимацию.

На переходной характеристике транзистора есть две характерные точки - начальный ток стока Iсо транзистора, определяемый при Uзи = 0.

и так называемое напряжение отсечки Uotc (рис. 1,а). И если с первом все ясно, то со второй вопрос сложнее.

О расчете ступенейета ступеней на полевом транзисторе

Дело в том, что переходная характеристика асимптотически стремится к оси Uзи, из-за чего указать определенно напряжение, при котором ток стока будет равен 0 (т. е. истинное напряжение отсечки), невозможно. Поэтому и было принято условное значение U - напряжение, при котором ток стока равен 10 мкА, т, е. легко измеряемому значению.

Однако именно вблизи этой точки характеристика имеет особенно резкий изгиб, что и дает наибольшую составляющую погрешности при линейной аппроксимации. Правильнее было бы определять вторую точку в начале участка изгиба, например, по критерию уменьшения дифференциального значения крутизны или по определенному значению тока стока. К сожалению, отсутствие надежной статистики по переходным характеристикам современных полевых транзисторов не позволяет четко решить этот вопрос.

Поэтому приходится принять линейную аппроксимацию по двум стандартным точкам - lсo и Uotc. Сопутствующая ей погрешность в большинстве случаев не превышает 15%, что вполне достаточно для практики. На рис. 1, а жирной прямой показана линейная аппроксимация реальной характеристики транзистора.

На рис. 2 в качестве примера изображена схема истокового повторителя. При Uвх = 0 (если замкнуть вход повторителя на общий провод) рабочая точка А находится на пересечении переходной характеристики и нагрузочной прямой Rи (рис. 1). Реальная рабочая точка находится на пересечении действительной переходной характеристики и нагрузочной прямой - это точка Б. Рисунок иллюстрирует характер погрешности из-за линейной аппроксимации.

О расчете ступенейета ступеней на полевом транзисторе

Начальное положение рабочей точки А по току Iнач, определяет выражение: Iнач = Iсо/(S·Rи+1). а по напряжению его можно выразить, как Uнач·Rи = lco·Rи Rn/(S · Rи+1). где S=lco/Uоtc - усредненная крутизна характеристики, a Rи - сопротивление резистора Rи (рис. 2).

При соединении затвора с общим проводом повторитель становится токостабилизирующим двуполюсником (стабилизатором тока). По первой формуле можно вычислить ток стабилизации.

Минимальное напряжение, при котором устройство входит в режим стабилизации тока, равно . Падение напряжения на канале транзистора UCи определяют либо по семейству выходных характеристик, либо экспериментально. Если Rи = 0. ток стабилизации максимален и равен Iсo, выходное сопротивление минимально и практически равно выходному сопротивлению транзистора.

С подачей на вход истокового повторителя постоянного (например, плюсового) напряжения Uвх, рабочая точка смещается в положение А, и ее новая координата по току I, соответствует выражению: Iт = Iнач + ΔI =(Iсо+Uвх·S)/(S·Rи+1). Значение закрывающего транзистор напряжения определится при It=0 - оно равно Uotc.

По напряжению новое положение рабочей точки можно выразить соотношением: Ut=lt · Rи=Rи(lco+ Uвх. · S)/(S · Rи+1).

Пределы входного напряжения в области плюсовых значений в общем виде описывает формула: Uвх=[Imax(S·Rи+1)-lco]/S, где Imax - максимальный ток транзистора. Максимальное значение тока Imax. ограничивают несколько факторов. Так. для транзисторов с затвором в виде р-n перехода оно не должно превышать Iс0, иначе затвор перейдет в режим прямого смещения и входное сопротивление транзистора резко уменьшится. С учетом этого последняя формула упрощается: Uвх=lCо·Rи.

Граница рабочего интервала со стороны минусового напряжения не зависит от начального режима работы транзистора и всегда начинается с Uotc. Из сказанного следует, что для расширения рабочего интервала следует выбирать транзистор с большим значением Uоtс.

Для транзистора с изолированным затвором значение ограничивается только предельно допустимым для прибора током или допустимой мощностью рассеивания. В любом случае 1max. не может превышать Uпит/Rи. При проведении расчете ступенейетов для конкретной ступени находят значение I определяемое каждым из рассмотренных выше факторов, выбирают наименьшее, и именно его подставляют в формулы.

Преобразуя выражение для Ut, получим Ut = Ico· Rи/(S · Rи+1 )+Uвх · S · Rи/ (S·Rи+1). Эта формула явно показывает, что характеристика Uвых = f(Uвх,) для потокового повторителя линейна.

Крутизна преобразования Kns исто-кового повторителя равна: Кns = ΔImax/ ΔUвх = S/(S·Rи + 1). Соответственно коэффициент передачи по напряжению Knu = Knl·Rи = S·Rи/(S·Rи+1).

На рис. 1,б показана характеристика Iс = f(Uвх) истокового повторителя. Передаточная характеристика Uвых = f(Uвх) имеет аналогичный вид. поскольку Uвых = Ic·Ки.

На рис. 3 изображена схема типичной усилительной ступени, в которой транзистор собран по схеме с общим истоком и резистором Rи автоматического смещения.

О расчете ступенейета ступеней на полевом транзисторе

ачальный режим транзистора определен сопротивлением этого резистора. При задании режима транзистора по току (в отсутствие входного сигнала) сопротивление резистора можно определить по формуле:

Rи = (Iсo"Iнач)/Iнач ·S.

Обычно рабочую точку выбирают на середине характеристики, т. е. Iнач =Iсо/2 и Uнач = Uotc/2, и эта формула упрощается: Rи = I/S = Uotc/Ico.

Если начальное положение рабочей точки на характеристике должно быть несимметричным (например, в случае несимметричного входного сигнала), сопротивление резистора Rи при заданном значении Uнач, начального смещения определяют по формуле: Rи = Uнач/(lco-Uнач·S). Напряжение на стоке транзистора будет равно Uc=Uпит - Iнач ·Rc.

При симметричном сигнале сопротивление резистора Rc, обеспечивающее максимальный размах выходного напряжения при отсутствии искажений, находят по формуле: Rc=(Uпит - Uнач)/2I. Если же рабочую точку выбирают в середине передаточной характеристики транзистора, то Rc=(Uпит - 0.5Uotc)lco.

Резистор Rи является элементом отрицательной ОС. уменьшающей коэффициент передачи ступени. Для устранения действия ОС по переменному напряжению обычно включают блокировочный конденсатор Сбл показанный на рис. 3 штриховыми линиями. С этим конденсатором амплитуда отрицательных полуволн входного сигнала не должна превышать значения, равного напряжению отсечки транзистора.

Устранить действие ОС по переменному напряжению можно и другим путем - включением в цепь истока транзистора вместо резистора элемента, напряжение на котором мало зависит от протекающего через него тока, например, диода в прямом включении, стабистора и т. п. Однако такое схемотехническое решение возможно лишь в том случае, когда напряжение на этом элементе будет равно Uнач. Если же напряжение на элементе будет несколько меньше, то последовательно с ним включают добавочный резистор небольшого сопротивления.

Коэффициент передачи Knu ступени, собранной по схеме с общим истоком, определен известным выражением: Knu=S·Rc. При наличии резистора в цепи истока Кnu уменьшается: Кnu=S·Rc/ (S · Rи+1 )=lco · Rc/(lco · Rи+Uotc).

Сигнал на стоке транзистора VT1 (выход 1) находится в противофазе со входным, а сигнал на истоке (выход 2) - в фазе, что позволяет применять эту ступень в качестве фазорасщепителя. Обычно от фазорасщепителей требуется, чтобы значения амплитуды сигналов по обоим выходам были равными: Uвых1 = Uвых2 или lc·Rc=lи·Rи. Поскольку lc=lи условие равенства амплитуд выглядит так: Rc = Rи. При этом будут равны и значения коэффициента передачи по обоим выходам. Коэффициент передачи, сопротивление резисторов Rc и Rи. а также другие необходимые параметры могут быть рассчитаны по представленным выше формулам.

Рассмотрим, например, условия, при которых ступень по схеме на рис. 3 превращается по выходу 1 в линейный инвертор с Кnu = 1. Приравняв единице Кnu в последней формуле, получим

Rc - Rи = 1/S = Uоtc/Ico.

Такая ступень по аналогии с подобной на биполярном транзисторе может быть названа стоковым повторителем.

Автор: А.Межлумян, г.Москва

Смотрите другие статьи раздела Радиолюбителю-конструктору.

Читайте и пишите полезные комментарии к этой статье.

<< Назад

Последние новости науки и техники, новинки электроники:

Ранняя Вселенная не была ледяной 28.11.2025

Понимание того, как формировались первые структуры во Вселенной, требует взгляда в эпохи, в которых не существовало ни звезд, ни галактик, ни привычных нам источников света. Научные группы по всему миру пытаются восстановить картину тех времен при помощи слабейших радиосигналов, оставшихся от водорода, который наполнял космос вскоре после Большого взрыва. Новые результаты, полученные на радиотелескопе Murchison Widefield Array в Австралии, неожиданным образом меняют представление об этих ранних этапах. Сразу после Большого взрыва, произошедшего около 13,8 миллиарда лет назад, пространство стремительно расширялось и остывало. Через несколько сотен тысяч лет образовался нейтральный водород, и началась так называемая эпоха тьмы, когда Вселенная была лишена источников излучения. Лишь значительно позже гравитация собрала газ в плотные области, где зародились первые звезды и ранние черные дыры, а их интенсивное излучение привело к реионизации водорода и окончательному появлению света. ...>>

Устройство идеальной очистки воздуха 28.11.2025

Качество воздуха в закрытых помещениях давно стало важнейшим фактором здоровья, особенно в городах, где люди проводят подавляющую часть времени внутри зданий. В последние годы исследователи уделяют все больше внимания именно тем технологиям, которые способны задерживать или разрушать вредоносные частицы до того, как они попадут в дыхательные пути человека. Одним из таких новаторских направлений стала разработка инженеров Университета Британской Колумбии в Оканагане, которые предложили принципиально иной подход к очистке воздуха в присутствии людей. По словам профессора Школы инженерии доктора Санни Ли, традиционные персонализированные вентиляционные системы действительно могут улучшать качество воздуха вокруг пользователя, однако их принцип работы имеет ряд ограничений. Человек вынужден находиться в строго определенной зоне, а одновременное использование одной системы несколькими людьми снижает эффективность. Кроме того, непрерывный поток сухого очищенного воздуха способен вызывать ...>>

Ощущение текстуры через экран гаджета 27.11.2025

Гаджеты научились передавать изображение и звук с впечатляющей реалистичностью, но тактильные ощущения по-прежнему остаются недоступными для полноценной цифровой симуляции. Именно поэтому инженеры и исследователи во всем мире стремятся создать технологии, которые позволят "почувствовать" виртуальный объект так же естественно, как и настоящий. Новая разработка специалистов Северо-Западного университета США стала одним из самых заметных шагов в этом направлении. Возглавлявшая исследование аспирантка Сильвия Тан (Sylvia Tan) подчеркивает, что прикосновение остается последним фундаментальным чувственным каналом, для которого пока нет зрелого цифрового аналога. По ее словам, если визуальные и звуковые интерфейсы давно обеспечивают высокую степень реалистичности, то осязание лишь начинает приближаться к этому уровню. В недавней публикации в журнале Science Advances Тан отмечает, что новая технология способна изменить само представление о взаимодействии человека с устройствами. Разработ ...>>

Случайная новость из Архива

Гнев может повысить креативность 29.01.2025

Гнев - сложная и многогранная эмоция, которая может возникать в ответ на различные ситуации: от чувства несправедливости до разочарования и угрозы. Он сопровождается учащенным сердцебиением, мышечным напряжением и побуждает человека к действию - решению проблемы или защите. Однако, влияние гнева на креативность до сих пор оставалось предметом споров среди ученых. Одни исследования показывали, что гнев может стимулировать творческое мышление, другие же свидетельствовали о том, что он, наоборот, мешает ему.

Группа ученых под руководством Ляньюй Син решила подробно изучить этот вопрос. Они провели метаанализ, изучив 2947 научных работ, посвященных связи между креативностью и гневом. В окончательный анализ вошли 23 исследования, в которых участвовали 2413 человек. Результаты показали слабую, но положительную связь между гневом и творческой продуктивностью. В среднем люди, испытывавшие гнев, немного лучше справлялись с креативными задачами. Однако, сила этой связи зависела от нескольких факторов.

Во-первых, эффект гнева на креативность оказался более заметным в странах Восточной Азии, тогда как в западных странах он практически не наблюдался. Это может быть связано с культурными особенностями восприятия и выражения эмоций. Во-вторых, в более новых исследованиях связь между гневом и креативностью была выражена сильнее, чем в более старых. Это может свидетельствовать о том, что методы изучения эмоций и креативности совершенствуются и становятся более точными.

Кроме того, гнев особенно усиливал так называемую "вредоносную креативность" - создание идей и решений, направленных на причинение вреда или нарушение этических норм. Это может быть связано с тем, что гнев побуждает человека к агрессивным действиям и поиску способов достижения своих целей любыми путями. Также гнев больше влиял на творчество в задачах, связанных с воображением. Экспериментальные исследования, где ученые намеренно вызывали у участников гнев, чаще фиксировали этот эффект, чем работы, основанные на естественных эмоциях. Возможно, в лабораторных условиях эмоции проявляются более ярко и оказывают большее влияние на когнитивные процессы.

При этом тип креативного задания, конечный результат и временные ограничения не оказали значительного влияния на связь гнева и творчества. Авторы исследования отмечают, что их работа фокусировалась только на основном эмоциональном состоянии гнева и не учитывала такие вторичные эмоции, как агрессия и враждебность. Эти факторы могут играть важную роль в понимании механизма влияния гнева на креативность.

Гнев может оказывать стимулирующее влияние на креативность, особенно в случае "вредоносного" творчества и задач, связанных с воображением. Однако, сила этого эффекта зависит от многих факторов, включая культурные особенности и индивидуальные различия. Дальнейшие исследования в этой области могут помочь нам лучше понять механизмы взаимосвязи между эмоциями и творческим мышлением, а также найти способы использования этого знания для развития креативных способностей человека.

Другие интересные новости:

▪ Хранение солнечной энергии на молекулярном уровне

▪ Золотой диск 10 000 гигабайт

▪ Датчик для умного дома Mi Human Sensor 2

▪ Молодежь в США сильнее всего эмоционально привязана к YouTube

▪ Вальс эритроцитов

Лента новостей науки и техники, новинок электроники

 

Интересные материалы Бесплатной технической библиотеки:

▪ раздел сайта Аудио и видеонаблюдение. Подборка статей

▪ статья Глоссарий DVD формата. Искусство видео

▪ статья Какой металл наиболее распространен в земной коре? Подробный ответ

▪ статья Инородное тело в дыхательных путях. Медицинская помощь

▪ статья Доработка компьютерной АС SP-P110. Энциклопедия радиоэлектроники и электротехники

▪ статья Ключевые смесители на микросхемах. Энциклопедия радиоэлектроники и электротехники

Оставьте свой комментарий к этой статье:

Имя:


E-mail (не обязательно):


Комментарий:





Главная страница | Библиотека | Статьи | Карта сайта | Отзывы о сайте

www.diagram.com.ua

www.diagram.com.ua
2000-2025